Sliding Mode Current Control Strategy for Nine-Switch Converter
dc.contributor.author | Gulbudak, O. | |
dc.contributor.author | Gokdag, M. | |
dc.contributor.author | Komurcugil, H. | |
dc.date.accessioned | 2024-09-29T16:16:39Z | |
dc.date.available | 2024-09-29T16:16:39Z | |
dc.date.issued | 2021 | |
dc.department | Karabük Üniversitesi | en_US |
dc.description | IEEE Industry Applications Society (IAS); IEEE Power Electronics Society (PELS) | en_US |
dc.description | 2nd IEEE International Conference on Smart Technologies for Power, Energy and Control, STPEC 2021 -- 19 December 2021 through 22 December 2021 -- Bilaspur -- 177737 | en_US |
dc.description.abstract | This paper proposes a sliding mode control strategy for regulating dual-load fed by a nine-switch converter. The nine-switch converter consists of two three-phase output terminals, and the nine-switch converter can control dual-loads. The nine-switch converter contains fewer switching devices compared to the two-parallel voltage-source inverters. The nines witch converter offers a more compact ac-drive system where multiple load control is required regarding power stage weight and size. Nevertheless, attaining a fully independent control for individual load is a challenging task. The poor closed-loop design causes an unpleasant circulating current between separate load stages. Therefore, the possibility of the interaction between different load stages is the primary closed-loop design consideration. This study proposes the sliding mode control to obtain a reliable energy conversion operation method for a dual output nine-switch converter. Sliding mode control methodology is comprehensively explained, and solid design steps are provided. The simulation work verifies the theoretical framework of the designed sliding mode controller. The performed simulation works demonstrate that multiple ac loads are well regulated by the proposed control method. © 2021 IEEE. | en_US |
dc.identifier.doi | 10.1109/STPEC52385.2021.9718752 | |
dc.identifier.isbn | 978-166544319-7 | |
dc.identifier.scopus | 2-s2.0-85127583901 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.uri | https://doi.org/10.1109/STPEC52385.2021.9718752 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14619/9248 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | Proceedings of 2021 IEEE 2nd International Conference on Smart Technologies for Power, Energy and Control, STPEC 2021 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Multi-load control | en_US |
dc.subject | Nine-Switch Converter | en_US |
dc.subject | Nonlinear control | en_US |
dc.subject | Sliding mode control | en_US |
dc.title | Sliding Mode Current Control Strategy for Nine-Switch Converter | en_US |
dc.type | Conference Object | en_US |