PH13-8Mo ÇELİĞİNİN FREZELENMESİNDE FARKLI İŞLEME ŞARTLARININ İŞLENEBİLİRLİĞE ETKİSİ
Yükleniyor...
Dosyalar
Tarih
2024-03
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu çalışmada, PH13-8Mo paslanmaz çeliğin frezelenmesinde yenilikçi ve sürdürülebilir soğutma/yağlama yöntemlerinin işleme performansı üzerinde etkileri ve işlenebilirlik süreçleri boyunca tezgâh tarafından tüketilen enerji miktarı incelenmiştir. İşleme deneyleri kaplamalı sementit karbür takımlar kullanılarak CNC dik işleme merkezinde gerçekleştirilmiştir. Bu hedefle, kuru, Minimum Miktarda Yağlama (MMY), Grafen (GRP+MMY), Kriyojenik (CRYO), CRYO+MMY, Hegzagonal Bor Nitrür (hBN+MMY) kesme koşulları oluşturulmuştur. Deneyler kesme hızı (40-80 m/dak), ilerleme (0,04-0,12 mm/dev) ve sabit (0,8 mm) kesme derinliğinde gerçekleştirilmiştir. 6 farklı kesme koşulunun kesme kuvveti, yüzey pürüzlülüğü ve enerji tüketimi üzerindeki etkileri incelenmiştir. Tüm kesme koşullarında kesme kuvvetinin değerlendirilmesinde en iyi sonuca GRP+MMY ortamında ulaşılmıştır. En iyi yüzey pürüzlülük değerine ise tüm kesme koşullarında hBN+MMY kesme ortamında ulaşılmıştır. CRYO+MMY kesme koşulunda ise en düşük enerji tüketimi verilerine ulaşılmıştır. Kuru ve MMY işlemeye kıyasla GRP+MMY kesme rejimi kullanıldığında sırasıyla kesme kuvvetlerinde ortalama %14,62 ve %8,04’lük bir iyileşme görülmüştür. Kuru işlemeye kıyasla CRYO kesme rejimi kullanıldığında yüzey pürüzlülüğünde ortalama %20,59 oranlarında iyileşme sağlanmıştır. Fakat MMY, GRP+MMY ve hBN+MMY işleme koşullarında ortalama yüzey pürüzlülüğünde sırasıyla %2,03, %9,07 ve %23,56’lık artış söz konusudur. Tüm kesme ortamlarında ilerleme hızı 0,04 mm/dev'den 0,08 mm/dev'e çıktığında enerji tüketimi ortalama %3,14 artmıştır. Ayrıca ilerleme hızı 0,08 mm/dev'den 0,12 mm/dev'e çıktığında bu artış oranı %2,46 olarak görülmektedir. ANOVA sonuçları değerlendirildiğinde tüm kesme koşullarında ilerleme hızı, kesme kuvveti ve yüzey pürüzlülüğü üzerinde en etkin parametre olarak görülmüştür.
In this study, the effects of innovative and sustainable cooling/lubrication methods on machining performance in milling PH13-8 Mo stainless steel and the amount of energy consumed by the machine during the machinability processes were examined. Machining experiments were carried out on a CNC vertical machining center using coated cementite carbide tools. With this goal, dry, Minimum Quantity Lubrication (MQL), Graphene (GRP+MQL), Cryogenic, CRYO+MQL, Hexagonal Boron Nitride (hBN+MQL) cutting conditions were created. The experiments were carried out at cutting speed (40-80 m/min), feed (0.04-0.12 mm/rev) and constant (0.8 mm) cutting depth. The effects of 6 different cutting conditions on cutting force, surface roughness and energy consumption were examined. In evaluating the cutting force under all cutting conditions, the best result was achieved in the GRP+MQL environment. The best surface roughness value was reached in the hBN+MQL cutting environment under all cutting conditions. In the CRYO+MQL cutting condition, the lowest energy consumption data was reached. Compared to dry and MMY machining, an average improvement of 14.62% and 8.04% in cutting forces was observed when using the GRP+MQL cutting regime, respectively. Compared to dry machining, an average of 20.59% improvement in surface roughness was achieved when the cryogenic cutting regime was used. However, there is an increase of 2.03%, 9.07% and 23.56% in the average surface roughness under MMY, GRP+MQL and hBN+MQL processing conditions, respectively. Energy consumption increased by an average of 3.14% when the feed rate increased from 0.04 mm/rev to 0.08 mm/rev in all cutting environments. Additionally, when the feed rate increases from 0.08 mm/rev to 0.12 mm/rev, this increase rate is seen as 2.46%. When ANOVA results were evaluated, feed rate was seen as the most effective parameter on cutting force and surface roughness in all cutting conditions."
In this study, the effects of innovative and sustainable cooling/lubrication methods on machining performance in milling PH13-8 Mo stainless steel and the amount of energy consumed by the machine during the machinability processes were examined. Machining experiments were carried out on a CNC vertical machining center using coated cementite carbide tools. With this goal, dry, Minimum Quantity Lubrication (MQL), Graphene (GRP+MQL), Cryogenic, CRYO+MQL, Hexagonal Boron Nitride (hBN+MQL) cutting conditions were created. The experiments were carried out at cutting speed (40-80 m/min), feed (0.04-0.12 mm/rev) and constant (0.8 mm) cutting depth. The effects of 6 different cutting conditions on cutting force, surface roughness and energy consumption were examined. In evaluating the cutting force under all cutting conditions, the best result was achieved in the GRP+MQL environment. The best surface roughness value was reached in the hBN+MQL cutting environment under all cutting conditions. In the CRYO+MQL cutting condition, the lowest energy consumption data was reached. Compared to dry and MMY machining, an average improvement of 14.62% and 8.04% in cutting forces was observed when using the GRP+MQL cutting regime, respectively. Compared to dry machining, an average of 20.59% improvement in surface roughness was achieved when the cryogenic cutting regime was used. However, there is an increase of 2.03%, 9.07% and 23.56% in the average surface roughness under MMY, GRP+MQL and hBN+MQL processing conditions, respectively. Energy consumption increased by an average of 3.14% when the feed rate increased from 0.04 mm/rev to 0.08 mm/rev in all cutting environments. Additionally, when the feed rate increases from 0.08 mm/rev to 0.12 mm/rev, this increase rate is seen as 2.46%. When ANOVA results were evaluated, feed rate was seen as the most effective parameter on cutting force and surface roughness in all cutting conditions."
Açıklama
Anahtar Kelimeler
Minimum Miktarda Yağlama (MMY), Paslanmaz çelik, Nano partikül, Frezeleme, Enerji tüketimi, Sürdürülebilir imalat., Minimum Quantity Lubrication (MQL), Stainless Steel, Nano Particle, Milling, Energy Consumption, Sustainable Manufacturing