CuO/Cu/rGO nanocomposite anodic titania nanotubes for boosted non-enzymatic glucose biosensors

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Royal Soc Chemistry

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Highly arranged porous anodic titania (TiO2) nanotube arrays (ATNT) were fruitfully fabricated by the anodization of Ti foil in an ammonium fluoride electrolyte. Then, the CuO/Cu nanoparticles were consistently decorated onto the porous ATNT surface through electrochemical deposition and afterward impregnated into graphene oxide (GO) aqueous solution to produce CuO/Cu/GO-ATNT, which was then electrochemically reduced to form CuO/Cu/rGO nanocomposite ATNT electrode. The microstructures, morphologies, and chemical elements were investigated using XRD and FESEM techniques linked with EDS and XPS, respectively. The as-fabricated CuO/Cu/rGO nanocomposite ATNT electrode was utilized for non-enzymatic glucose sensing in a neutral electrolyte and exhibited superior electro-catalytic activity compared with the pristine and CuO/Cu nanoparticle ATNT electrodes. The electrocatalysis performance of the recommended CuO/Cu/rGO nanocomposite ATNT electrode was inspected and optimized. The experimental results exposed an effective amperometric electrode of glucose acquired under 0.6 V vs. Ag/AgCl with an excellent sensitivity of (371.6 mu A mM(-1) cm(-2)), a low detection limit (22.8 mu M), and a wide linear range from 0.5 mM to 16 mM (R-2 = 0.9992). This designed non-enzymatic glucose biosensor demonstrated high stability, reproducible, and selective biosensor. Hence, this endorses its promising technique for the detection of glucose samplers for clinical and pharmaceutical diagnoses.

Açıklama

Anahtar Kelimeler

Copper-Oxide Nanoparticles, Graphene Oxide, Electrochemical Sensors, Cuo Nanoparticles, Green Synthesis, Tio2 Nanotubes, Metal-Ions, Performance, Cu2o, Electrodeposition

Kaynak

New Journal of Chemistry

WoS Q Değeri

Q2

Scopus Q Değeri

Q2

Cilt

47

Sayı

16

Künye