An evaluation of powers of the negative spectrum of Schrodinger operator equation with a singularity at zero
Küçük Resim Yok
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springeropen
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this study, we Investigate the discreteness and finiteness of the negative spectrum of the differential operator L in the Hilbert space L-2(H, [0, infinity)), defined as L-y = -d(2)y/dx(2) + A(A+1)/x(2) y - Q(x)y, under the boundary condition y(0) = 0.& para;& para;In the case when the negative spectrum is finite, we obtain an evaluation for the sums of powers of the absolute values of negative eigenvalues. The obtained result is applied to a class of equations of mathematical physics.
Açıklama
Anahtar Kelimeler
operator-differential equations, Schrodinger operator, spectrum, eigenvalues, Hilbert space
Kaynak
Boundary Value Problems
WoS Q Değeri
Q1
Scopus Q Değeri
Q3