Three-dimensional thermomechanical wave propagation analysis of sandwich nanoplate with graphene-reinforced foam core and magneto-electro-elastic face layers using nonlocal strain gradient elasticity theory

dc.authoridAktas, Kerim Gokhan/0000-0002-8076-6799
dc.contributor.authorAktas, Kerim Gokhan
dc.date.accessioned2024-09-29T15:51:06Z
dc.date.available2024-09-29T15:51:06Z
dc.date.issued2024
dc.departmentKarabük Üniversitesien_US
dc.description.abstractThis article investigates the propagation of bending, longitudinal, and shear waves in a smart sandwich nanoplate with a graphene platelet (GPL)-reinforced foam core and magneto-electro-elastic (MEE) surface layers using sinusoidal higher-order shear deformation theory (SHSDT). The suggested nanoplate is comprised of a Ti-6Al-4V foam core placed between MEE surface layers. The MEE surface layers are composed of a volumetric combination of cobalt-ferrite (CoFe2O4) and barium-titanate (BaTiO3). The foam core and MEE face layers' material characteristics are temperature dependent. In this study, three different core types are considered: metallic solid core (Type-I), GPL-reinforced solid core (Type-II) and GPL-reinforced foam core (Type-III), as well as three different foam distributions: symmetrical foam I (S-Foam I), symmetrical foam II (S-Foam II) and uniform foam (U-Foam). To derive the nanoplate's equations of motion and determine the system response, Hamilton's principle and Navier's method are employed. The effects of various parameters such as the wave number, nonlocal parameter, foam void coefficient and distribution pattern, GPL volume fraction, and thermal, electric, and magnetic charges, on the phase velocity and wave frequency are investigated via analytical calculations. The findings of the research indicate that the 3-D wave propagation characteristics of the sandwich nanoplate can be considerably modified or tuned with respect to external loads and material parameters. Thus, the proposed sandwich structure is expected to provide important contributions to radar stealth applications, protection of nanoelectromechanical devices from high frequency and temperature environments, advancement of smart nanoelectromechanical sensors characterized by lightweight and temperature sensitivity and wearable health equipment applications.en_US
dc.description.sponsorshipScientific and Technological Research Council of Tuerkiye (TUEB ITAK)en_US
dc.description.sponsorshipOpen access funding provided by the Scientific and Technological Research Council of Tuerkiye (TUEB ITAK). No funding was received for conducting this study.en_US
dc.identifier.doi10.1007/s00707-024-04001-1
dc.identifier.endpage5619en_US
dc.identifier.issn0001-5970
dc.identifier.issn1619-6937
dc.identifier.issue9en_US
dc.identifier.scopus2-s2.0-85197527264en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage5587en_US
dc.identifier.urihttps://doi.org/10.1007/s00707-024-04001-1
dc.identifier.urihttps://hdl.handle.net/20.500.14619/3898
dc.identifier.volume235en_US
dc.identifier.wosWOS:001262226700002en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer Wienen_US
dc.relation.ispartofActa Mechanicaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFree-Vibration Analysisen_US
dc.subjectLongitudinal Vibrationen_US
dc.subjectStressen_US
dc.subjectPlatesen_US
dc.subjectBeamsen_US
dc.subjectNanotubesen_US
dc.subjectSurfaceen_US
dc.subjectMicrobeamsen_US
dc.subjectNanobeamsen_US
dc.subjectBehavioren_US
dc.titleThree-dimensional thermomechanical wave propagation analysis of sandwich nanoplate with graphene-reinforced foam core and magneto-electro-elastic face layers using nonlocal strain gradient elasticity theoryen_US
dc.typeArticleen_US

Dosyalar