InP/InGaAs Uni-Traveling-Carrier Photodiode (UTC-PD) With Improved EM Field Response

dc.authoridHaxha, Shyqyri/0000-0002-9641-5520
dc.authoridOZTURK, Turgut/0000-0002-0749-5849
dc.authoridjabeen, maria/0000-0002-0576-286X
dc.contributor.authorJabeen, Maria
dc.contributor.authorHaxha, Shyqyri
dc.contributor.authorFlint, Ian
dc.contributor.authorOzturk, Turgut
dc.contributor.authorCharlton, Martin D. B.
dc.contributor.authorAbdelMalek, Fathi
dc.date.accessioned2024-09-29T16:04:29Z
dc.date.available2024-09-29T16:04:29Z
dc.date.issued2022
dc.departmentKarabük Üniversitesien_US
dc.description.abstractIn this article, a unique structure of InP/InGaAs uni-traveling-carrier photodiode (UTC-PD) is proposed. Compared with the one-sided junction photodiode, the UTC-PD has the advantages of a simpler epitaxial layer structure while maintaining the characteristics of high bandwidth and high output power loss profile. Simulated results show that a large built-in electric field can be generated under illumination, which aids UTC carrier velocity. The merits of the new structure are compared to a standard UTC-PD photodiode in terms of improved electric field and carrier concentration response. It is demonstrated that the photogeneration and light absorption of UTC-PDs are improved by incorporating a step-like internal texture of cones and dots profile in the photo absorption layer. The simulated device shows a peak electrical 3-dB bandwidth of 65 GHz at a low light intensity and reverse bias voltage. The performance characteristics of 1-D and 2-D UTC-PD simulations, including internal electric field distribution, energy band diagram, carrier concentration, and power loss distribution, are carefully studied. A theoretical discussion of the working principle and key performance characteristics of a UTC-PD enhanced by heterojunction design is reported. The entire physical environment is modeled and simulated through the finite element method (FEM) using commercial software. The proposed photodiode structure configuration is designed and optimized for photodetectors for high RF frequencies at different light intensities. To the best of our knowledge, the obtained bandwidth and electric field response is the fastest among those reported for other various higher wavelength photodiodes.en_US
dc.identifier.doi10.1109/JSEN.2022.3209019
dc.identifier.endpage20447en_US
dc.identifier.issn1530-437X
dc.identifier.issn1558-1748
dc.identifier.issue21en_US
dc.identifier.scopus2-s2.0-85139518448en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage20438en_US
dc.identifier.urihttps://doi.org/10.1109/JSEN.2022.3209019
dc.identifier.urihttps://hdl.handle.net/20.500.14619/6150
dc.identifier.volume22en_US
dc.identifier.wosWOS:000878266500042en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIeee-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Sensors Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCarrier velocityen_US
dc.subjectextreme electric fielden_US
dc.subjecthigh EM distributionen_US
dc.subjectInGaAsen_US
dc.subjectInPen_US
dc.subjectnanoconesen_US
dc.subjectuni-traveling carrier photodiodeen_US
dc.titleInP/InGaAs Uni-Traveling-Carrier Photodiode (UTC-PD) With Improved EM Field Responseen_US
dc.typeArticleen_US

Files