Implementation of hybrid nanofluid flowing in dimpled tube subjected to magnetic field

dc.authoridTekir, Mutlu/0000-0003-2289-7034
dc.authoridARSLAN, Kamil/0000-0002-1216-6812
dc.authoridGurdal, Mehmet/0000-0003-2209-3394
dc.contributor.authorGurdal, Mehmet
dc.contributor.authorPazarlioglu, Hayati Kadir
dc.contributor.authorTekir, Mutlu
dc.contributor.authorAltunay, Fethi Murat
dc.contributor.authorArslan, Kamil
dc.contributor.authorGedik, Engin
dc.date.accessioned2024-09-29T15:57:14Z
dc.date.available2024-09-29T15:57:14Z
dc.date.issued2022
dc.departmentKarabük Üniversitesien_US
dc.description.abstractTo pursue of enhancement convective heat transfer, both active and passive techniques have been elucidated simultaneously in this study. The effect of hybrid nanofluid flow in a dimpled tube implemented constant magnetic field (0 T <= B <= 0.3 T) to determine the convective heat transfer rate has not been investigated comparatively either numerically or experimentally, so far. Therefore, this study is the first study to elucidate the effect of hybrid nanofluid flow under the effect of a magnetic field at the fully developed hydrodynamic and developing thermally flow condition. Hydrothermal behavior of 1.0% vol. Fe3O4/H2O, 1.0% vol. Cu/H2O as mono nanofluid and 0.5% vol. Fe3O4-0.5% vol. Cu/H2O as hybrid nanofluid flow in the dimpled tube has been examined under constant heat flux boundary condition (q = 4357 W/m2) and laminar flow regime (1131 <= Re <= 2102). As a result of experiments and numerical analyses, it is concluded that Nusselt number and friction factor have been enhanced using the magnetic field. Hybrid nanofluid flow in the dimpled tube implemented the magnetic field with the magnitude of 0.3 T causes to increase the Nusselt number and friction factor up to 11.87% and 6.19% for numerical, 174.65%, and 169.4% for experimental compared to the case of absence of a magnetic field, respectively.en_US
dc.description.sponsorshipKarabuk University [KBUEBAP-FDK-2020-2333]en_US
dc.description.sponsorshipThe authors would like to thank Karabuk University under the KBUEBAP-FDK-2020-2333 scientific research project.en_US
dc.identifier.doi10.1016/j.icheatmasstransfer.2022.106032
dc.identifier.issn0735-1933
dc.identifier.issn1879-0178
dc.identifier.scopus2-s2.0-85127763407en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1016/j.icheatmasstransfer.2022.106032
dc.identifier.urihttps://hdl.handle.net/20.500.14619/4700
dc.identifier.volume134en_US
dc.identifier.wosWOS:000806162400004en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofInternational Communications in Heat and Mass Transferen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConstant magnetic fielden_US
dc.subjectHybrid nanofluiden_US
dc.subjectForced convectionen_US
dc.subjectDimpled tubeen_US
dc.subjectCFDen_US
dc.titleImplementation of hybrid nanofluid flowing in dimpled tube subjected to magnetic fielden_US
dc.typeArticleen_US

Dosyalar