Determining of the embodied carbon of light gauge steel and wood wall construction

Küçük Resim Yok

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

TUBITAK

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In order to provide resources efficiency and prevent environmental pollution during the building production process, the selection of materials with economical, natural, healthy, proper, low embodied energy and low embodied carbon value is very important within the scope of sustainable architecture. Materials which have high embodied energy during their production such as steel and aluminum also have high embodied carbon. The design of the building elements that make up the building has changed over time, it emphasized light gauge skeleton system wall constructions that provide earthquake-resistant, lightweight and fast production. Although they resemble each other as light wooden and light gauge steel systems, they can differ greatly in terms of environmental performance. In this context; embodied carbon values of light wood and steel wall construction with the same heat transfer coefficient, area and volume assumed to be produced in Ankara were determined. Also, in order to determine the effect of the window having different frame types to be used in these constructions, wood, PVC and aluminum frame windows were integrated into the constructions and the embodied carbon values were calculated separately. According to the obtained data, it was found that steel material has a high embodied carbon even it has low area and volume in the wall construction and it has been suggested that after the lifetime of light gauge steel wall systems in the constructions, the carbon emissions can be reduced by reuse or recycling methods. © 2020, TUBITAK. All rights reserved.

Açıklama

Anahtar Kelimeler

Embodied CO<sub>2</sub>e, Light gauge steel construction, Light wood construction, PVC, aluminium

Kaynak

El-Cezeri Journal of Science and Engineering

WoS Q Değeri

Scopus Q Değeri

Q4

Cilt

7

Sayı

2

Künye