Understanding the machining induced tribological mechanism of Hastelloy-X under sustainable cooling/lubrication conditions

Küçük Resim Yok

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer London Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Despite the recent developments in non-conventional manufacturing approaches, machining is still a prominent technique for the mass production of metallic components. However, given the difficult-to-machine nature and high heat generation during machining of Hastelloy-X, there is a lack of comparative investigations that can provide basics for sustainable process management in machining of Hastelloy-X. Different sustainable cooling approaches (dry, minimum quantity lubrication (MQL), cryogenic) and their impact on Hastelloy-X machining process behavior have been investigated in this study. Machining parameters such as constant cutting speed of 124 mm/min, feed rate of 0.15 mm/min, and cutting depth of 0.1 mm and cutting force, cutting temperature, and surface roughness were consider as output responses. It was observed that with the adaptation of cryogenic conditions, cutting forces can be reduced 5 to 14% in comparison with MQL and dry conditions. Cutting temperature and surface roughness values were however observed to be largely reduced with cryogenic cooling. The chipping and adhesion were found to be reduced with cryogenic cooling due to the reduction in workpiece softening behavior and increase in hardness to cutting tool.

Açıklama

Anahtar Kelimeler

Hastelloy, Turning, MQL, Cryogenic, Tool wear, Tribology

Kaynak

International Journal of Advanced Manufacturing Technology

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

123

Sayı

3-4

Künye