A hybrid CNN-LSTM model for pre-miRNA classification

dc.authoridTasdelen, Abdulkadir/0000-0003-4402-1463
dc.authoridSEN, BAHA/0000-0003-3577-2548
dc.contributor.authorTasdelen, Abdulkadir
dc.contributor.authorSen, Baha
dc.date.accessioned2024-09-29T16:01:02Z
dc.date.available2024-09-29T16:01:02Z
dc.date.issued2021
dc.departmentKarabük Üniversitesien_US
dc.description.abstractmiRNAs (or microRNAs) are small, endogenous, and noncoding RNAs construct of about 22 nucleotides. Cumulative evidence from biological experiments shows that miRNAs play a fundamental and important role in various biological processes. Therefore, the classification of miRNA is a critical problem in computational biology. Due to the short length of mature miRNAs, many researchers are working on precursor miRNAs (pre-miRNAs) with longer sequences and more structural features. Pre-miRNAs can be divided into two groups as mirtrons and canonical miRNAs in terms of biogenesis differences. Compared to mirtrons, canonical miRNAs are more conserved and easier to be identified. Many existing pre-miRNA classification methods rely on manual feature extraction. Moreover, these methods focus on either sequential structure or spatial structure of pre-miRNAs. To overcome the limitations of previous models, we propose a nucleotide-level hybrid deep learning method based on a CNN and LSTM network together. The prediction resulted in 0.943 (%95 CI +/- 0.014) accuracy, 0.935 (%95 CI +/- 0.016) sensitivity, 0.948 (%95 CI +/- 0.029) specificity, 0.925 (%95 CI +/- 0.016) F1 Score and 0.880 (%95 CI +/- 0.028) Matthews Correlation Coefficient. When compared to the closest results, our proposed method revealed the best results for Acc., F1 Score, MCC. These were 2.51%, 1.00%, and 2.43% higher than the closest ones, respectively. The mean of sensitivity ranked first like Linear Discriminant Analysis. The results indicate that the hybrid CNN and LSTM networks can be employed to achieve better performance for pre-miRNA classification. In future work, we study on investigation of new classification models that deliver better performance in terms of all the evaluation criteria.en_US
dc.identifier.doi10.1038/s41598-021-93656-0
dc.identifier.issn2045-2322
dc.identifier.issue1en_US
dc.identifier.pmid34239004en_US
dc.identifier.scopus2-s2.0-85109719509en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1038/s41598-021-93656-0
dc.identifier.urihttps://hdl.handle.net/20.500.14619/5500
dc.identifier.volume11en_US
dc.identifier.wosWOS:000674513600043en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.publisherNature Portfolioen_US
dc.relation.ispartofScientific Reportsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPosttranscriptional Regulationen_US
dc.subjectMicrorna Biogenesisen_US
dc.subjectDiagnosisen_US
dc.subjectRecognitionen_US
dc.subjectMechanismsen_US
dc.subjectPrecursorsen_US
dc.subjectSelectionen_US
dc.subjectNetworksen_US
dc.subjectDiseaseen_US
dc.subjectGenesen_US
dc.titleA hybrid CNN-LSTM model for pre-miRNA classificationen_US
dc.typeArticleen_US

Dosyalar