Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load
Küçük Resim Yok
Tarih
2021
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer Heidelberg
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this study, the dynamic behavior of composite beams reinforced by carbon nanotubes (CNTs) exposed to a mass moving is investigated. By considering the external potential energy due to the applied moving mass, the equations of motion of the CNT-reinforced beam are obtained using Hamilton's principle by combining Reddy's third-order shear deformation theory and nonlocal strain gradient theory. Three types of aligned CNT-reinforced beams are considered, namely uniformly distributed CNT beams (UD-CNT) and functionally graded CNT beams type ? (FG?-CNT), and type X (FGX-CNT). Navier's procedure is applied to obtain the closed-form solutions of simply supported CNT-reinforced beams. Verification of the present solution with previous works is presented. A detailed parametric analysis is carried out to highlight the impact of moving load velocity, nonlocal parameter, material scale parameter, total volume fraction and CNTs distribution patterns on the midspan deflections of CNTs-reinforced composite beams. The proposed model is useful in the designing and analyzing of MEMS/NEMS, nanosensor, and nanoactuator manufactured from CNTs.
Açıklama
Anahtar Kelimeler
Free-Vibration Analysis, Composite Beams, Nonlinear Vibration, Forced Vibration, Cnts, Stability, Simulations
Kaynak
European Physical Journal Plus
WoS Q Değeri
Q2
Scopus Q Değeri
Q2
Cilt
136
Sayı
4