Mechanistic pathways and kinetic studies of oxygen reduction reaction (ORR) at Covalent Triazine Frameworks (CTFs)

dc.authoridSonmez, Turgut/0000-0002-3927-2551
dc.authoridHamzah, Hairul Hisham/0000-0002-8296-1360
dc.contributor.authorSoenmez, Turgut
dc.contributor.authorUecker, Jan
dc.contributor.authorHamzah, Hairul Hisham
dc.contributor.authorPalkovits, Regina
dc.date.accessioned2024-09-29T15:57:20Z
dc.date.available2024-09-29T15:57:20Z
dc.date.issued2024
dc.departmentKarabük Üniversitesien_US
dc.description.abstractHerein, four different metal-free nitrogen containing Covalent Triazine Frameworks (CTFs) based on their applied monomers (DCP, DCBP, mDCB and pDCB) are synthesized via a classical ionothermal synthesis route (ZnCl2, 400/600 degrees C). These materials are fully characterized and their electrochemical activities for ORR are tested and compared to each other including Carbon Super P and Pt black as standards in 0.1 M KOH. While DCP provides similar catalytic activity to Carbon Super P showing mostly a 2e- process (n=2.95) with high H2O2 formation of 52.6 %, the other three CTFs (DCBP, mDCB and pDCB) possess higher ORR activities, surprisingly even much higher limiting current densities than Pt black, proving that O2 is mainly reduced via direct 4epathway since n values are in the range of 3.52 to 3.62 and the detected H2O2 values are in the range of 19-23.9 %. Among the studied CTFs, mDCB reaches a limiting current density of -5.61 mA cm-2 (1.21 mA cm-2 larger than that for Pt black, -4.40 mA cm-2) with 0.11 V larger onset potential compared to Pt black. The significant electrochemical performances of the CTF materials in ORR via a 4e- process are correlated to the high specific surface areas (up to 2500 m2 g-1), large pore volumes (up to 2.05 cm3 g-1) and the largest total N-graphitic/ quaternary contents as well as micro-mesoporous structure properties.en_US
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the Exzellenzcluster 2186 The Fuel Science Center [390919832]; Scientific and Technological Research Council of Turkey (TUBITAK), Republic of Turkeyen_US
dc.description.sponsorshipThis study was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the Exzellenzcluster 2186 The Fuel Science Center ID: 390919832. TS acknowledge the receipt of a postdoctoral fellowship from The Scientific and Technological Research Council of Turkey (TUBITAK), Republic of Turkey. We thank Sabina Alexandra Nicolae and Timo Bisswanger for their help to carry out XPS and Raman measurements, respectively.en_US
dc.identifier.doi10.1016/j.ijhydene.2024.05.259
dc.identifier.endpage599en_US
dc.identifier.issn0360-3199
dc.identifier.issn1879-3487
dc.identifier.scopus2-s2.0-85193576640en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage588en_US
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2024.05.259
dc.identifier.urihttps://hdl.handle.net/20.500.14619/4748
dc.identifier.volume71en_US
dc.identifier.wosWOS:001245317500001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofInternational Journal of Hydrogen Energyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCovalent triazine frameworksen_US
dc.subjectOxygen reduction reactionen_US
dc.subjectPathwaysen_US
dc.subjectKineticsen_US
dc.subjectAlkalineen_US
dc.subjectMetal -air batteriesen_US
dc.titleMechanistic pathways and kinetic studies of oxygen reduction reaction (ORR) at Covalent Triazine Frameworks (CTFs)en_US
dc.typeArticleen_US

Dosyalar