Superior effects of hybrid laser shock peening and ultrasonic nanocrystalline surface modification on fatigue behavior of additive manufactured AlSi10Mg

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Science Sa

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

The surface texture of metallic parts produced by laser powder bed fusion (L-PBF) in the as-built condition detrimentally affects their mechanical properties, especially fatigue behavior. Accordingly, applying surface post-treatments has become an attractive approach to improve the mechanical performance of these materials. In the present study, both the individual and combined effects of post-processing methods, i.e., laser shock peening (LSP) and ultrasonic nanocrystalline surface modification (UNSM) with the same intensity of 10-12 A [0.001 in.], were systematically investigated on mechanical properties and fatigue behavior of L-PBF AlSi10Mg speci-mens. A wide range of experiments involving microstructural characterization, hardness and residual stresses measurements, porosity and surface texture analyses, tensile tests, and rotating bending fatigue tests were conducted. The results revealed that the hybrid LSP + UNSM process resulted in significant improvement in mechanical properties and fatigue behavior due to (i) sub-surface pores closure up to the depth of 517 mu m, (ii) 60 % surface hardness improvement, (iii) inducing-420 MPa surface compressive residual stresses, and (iv) surface roughness reduction up to 70 %. The fatigue life was improved up to 75, 56, and 35-fold compared to the as-built state after applying LSP + UNSM, UNSM, and LSP treatments, respectively.

Açıklama

Anahtar Kelimeler

Additive manufacturing (AM), AlSi10Mg, Laser shock peening (LSP), Ultrasonic nanocrystalline surface modification (UNSM), Fatigue

Kaynak

Surface & Coatings Technology

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

463

Sayı

Künye