Crystallinity tuning of LCNO/graphene nanocomposite cathode for high-performance lithium-ion batteries
dc.authorid | Jubu, Rex/0000-0002-5249-1273 | |
dc.authorid | Chahrour, Khaled M. N./0000-0002-8799-3468 | |
dc.authorid | Addie, Ali/0000-0001-8622-5443 | |
dc.contributor.author | Haider, Adawiya J. | |
dc.contributor.author | Chahrour, Khaled M. | |
dc.contributor.author | Addie, Ali J. | |
dc.contributor.author | Abdullah, Ahmed Q. | |
dc.contributor.author | Jubu, Peverga R. | |
dc.contributor.author | AL-Saedi, Safaa I. | |
dc.contributor.author | Naje, Asama N. | |
dc.date.accessioned | 2024-09-29T16:00:27Z | |
dc.date.available | 2024-09-29T16:00:27Z | |
dc.date.issued | 2024 | |
dc.department | Karabük Üniversitesi | en_US |
dc.description.abstract | In this work, a graphene-enhanced LiCo0.525Ni0.475O2 (LCNOG) cathode was synthesized by self-propagating high-temperature synthesis and the effects of annealing at 650-850 degrees C were investigated. Sharper X-ray diffraction peaks showed enhanced crystallization with an increase in average crystallite size from 28 nm to 56 nm after annealing at 850 degrees C. LCNOG annealed at 850 degrees C delivered a high capacity of over 2030 J compared to 1280 J, with a near ideal coulombic efficiency of 99.5 % and long cycle stability. The acceleration of kinetics is evidenced by more favorable redox peak positions in voltammetry and a 5-fold lower interfacial resistance in electrochemical impedance spectroscopy. The improved performance is due to the larger grain size, higher crystallinity, increased conductivity and graphene-induced diffusion facilitation. The relationship between crystallinity and cathodic properties provides critical insight into cathode design. The exceptional performance achieved by tailoring crystallinity through annealing makes LCNOG a potential material for high-voltage cathodes for lithium-ion technology. | en_US |
dc.identifier.doi | 10.1016/j.mseb.2023.117116 | |
dc.identifier.issn | 0921-5107 | |
dc.identifier.issn | 1873-4944 | |
dc.identifier.scopus | 2-s2.0-85180789053 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.mseb.2023.117116 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14619/5155 | |
dc.identifier.volume | 300 | en_US |
dc.identifier.wos | WOS:001144493500001 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Materials Science and Engineering B-Advanced Functional Solid-State Materials | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Graphene | en_US |
dc.subject | Lithium -ion batteries | en_US |
dc.subject | Cathode materials | en_US |
dc.subject | Electrochemical performance | en_US |
dc.title | Crystallinity tuning of LCNO/graphene nanocomposite cathode for high-performance lithium-ion batteries | en_US |
dc.type | Article | en_US |