Enhancing Road Safety: Real-Time Distracted Driver Detection Using Nvidia Jetson Nano and YOLOv8
dc.authorid | N. Neamah, Osamah/0009-0008-6299-7789 | |
dc.contributor.author | Neamah, Osamah N. | |
dc.contributor.author | Almohamad, Tarik Adnan | |
dc.contributor.author | Bayir, Raif | |
dc.date.accessioned | 2024-09-29T16:04:31Z | |
dc.date.available | 2024-09-29T16:04:31Z | |
dc.date.issued | 2024 | |
dc.department | Karabük Üniversitesi | en_US |
dc.description | Zooming Innovation in Consumer Technologies Conference (ZINC) -- MAY 22-23, 2024 -- Novi Sad, SERBIA | en_US |
dc.description.abstract | This study introduces an innovative approach that combines cutting-edge technology and advanced models for real-time applications. Leveraging the performance of the Nvidia Jetson Nano, alongside an integrated camera and GSM/GPS module, our innovative system demonstrates both its practicality and versatility. Specifically, by employing the YOLOv8 classification model for handling State Farm Distracted Driver Detection data which underscores its adaptability and effectiveness in this critical domain. Additionally, our research thoroughly assesses computational efficiency, exploring both hardware and software-based analysis methods. This work is a cornerstone in harnessing technology for real-world impact, merging innovation with practicality and comprehensive evaluation. | en_US |
dc.description.sponsorship | IEEE | en_US |
dc.identifier.doi | 10.1109/ZINC61849.2024.10579437 | |
dc.identifier.endpage | 198 | en_US |
dc.identifier.isbn | 979-8-3503-4915-3 | |
dc.identifier.isbn | 979-8-3503-4916-0 | |
dc.identifier.scopus | 2-s2.0-85199213789 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 194 | en_US |
dc.identifier.uri | https://doi.org/10.1109/ZINC61849.2024.10579437 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14619/6186 | |
dc.identifier.wos | WOS:001266171500044 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 2024 Zooming Innovation in Consumer Technologies Conference, Zinc 2024 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Deep Learning | en_US |
dc.subject | YOLOv8 | en_US |
dc.subject | Distracted Driver Detection | en_US |
dc.subject | Driver Behavior | en_US |
dc.subject | Vehicle to Everything | en_US |
dc.title | Enhancing Road Safety: Real-Time Distracted Driver Detection Using Nvidia Jetson Nano and YOLOv8 | en_US |
dc.type | Conference Object | en_US |