Porous clinoptilolite-nano biphasic calcium phosphate scaffolds loaded with human dental pulp stem cells for load bearing orthopedic applications

dc.authoridPazarceviren, Ahmet Engin/0000-0001-5233-860X
dc.authoridTezcaner, Aysen/0000-0003-4292-5856
dc.authoridAlshemary, Ammar Z/0000-0001-5367-1869
dc.authoridEvis, Zafer/0000-0002-7518-8162
dc.contributor.authorAlshemary, Ammar Z.
dc.contributor.authorPazarceviren, Ahmet Engin
dc.contributor.authorKeskin, Dilek
dc.contributor.authorTezcaner, Aysen
dc.contributor.authorHussain, Rafaqat
dc.contributor.authorEvis, Zafer
dc.date.accessioned2024-09-29T16:03:03Z
dc.date.available2024-09-29T16:03:03Z
dc.date.issued2019
dc.departmentKarabük Üniversitesien_US
dc.description.abstractClinoptilolite (Cpt)-nanohydroxyapatite (HA) (Cpt-HA) scaffolds were fabricated as a potential material for load bearing orthopaedic applications. Cpt-HA materials were successfully synthesized by using microwave assisted reflux method followed by the fabrication of three-dimensional (3D) porous scaffold via thermal decomposition process using polyethylene glycol (PEG)/polyvinyl alcohol (PVA) as porogens. The scaffold materials were characterized using x-ray diffraction, Fourier transform Infra-red, Scanning electron microscopy and Energy dispersive spectroscopy techniques. Incorporation of Cpt in HA scaffold significantly increased the compressive strength and surface hardness while scaffolds retained an interconnected porous structure with 64% porosity. Human dental pulp stem cells (DPSCs) were isolated from the third molar and used as pluripotent-like cell model to evaluate the biological properties of Cpt-HA scaffolds. Highest cellular attachment and proliferation were observed for DPSCs seeded on 2.0 g Cpt-HA scaffolds compare to pure HA. Similarly, significantly higher ALP activity of cells was observed on Cpt-HA scaffolds compared to pure HA. The enhanced proliferation and osteogenic response of the DPSCs cultured on Cpt-HA scaffolds suggest that the fabricated scaffolds can be used in bone tissue engineering. In this work, we have successfully shown that the interconnected porous Cpt-HA scaffolds have superior mechanical biological properties compared to pure HA scaffold.en_US
dc.description.sponsorshipKarabuk University [KBUBAP-17-DS-171]en_US
dc.description.sponsorshipDr Ammar Z Alshemary would like to thank Karabuk University for providing financial support via Project no. KBUBAP-17-DS-171. Authors also wish to thank Rota Madencilik Company for providing Clinoptilolite.en_US
dc.identifier.doi10.1088/1748-605X/ab3714
dc.identifier.issn1748-6041
dc.identifier.issn1748-605X
dc.identifier.issue5en_US
dc.identifier.pmid31362280en_US
dc.identifier.scopus2-s2.0-85071698067en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1088/1748-605X/ab3714
dc.identifier.urihttps://hdl.handle.net/20.500.14619/5864
dc.identifier.volume14en_US
dc.identifier.wosWOS:000482616300001en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.publisherIop Publishing Ltden_US
dc.relation.ispartofBiomedical Materialsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjecthydroxyapatiteen_US
dc.subjectclinoptiloliteen_US
dc.subjectscaffolden_US
dc.subjectload bearing applicationen_US
dc.subjectbiocompatibilityen_US
dc.titlePorous clinoptilolite-nano biphasic calcium phosphate scaffolds loaded with human dental pulp stem cells for load bearing orthopedic applicationsen_US
dc.typeArticleen_US

Dosyalar