Comprehensive analysis of tool wear, surface roughness and chip morphology in sustainable turning of Inconel-601 alloy

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Sci Ltd

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

The objective of this research was to explore the impact of various cooling conditions on machinability, as potential alternatives to traditional cooling methods. To achieve this aim, a series of experiments were performed, where dry machining, minimum quantity lubrication (MQL), nanofluids, cryogenic (cryo) cooling, and hybrid cooling (cryo+nano MQL) methods were tested. Under distinct nanofluids conditions hBN(0.2 %) + graphene(0.2 %) performed well and overall cryo+nano MQL produced better result in terms of tool wear, microhardness, surface and chip morphology. The results demonstrated that the cooling effect of the Cryo-MQL regime, which maintains the cutting temperature at a tolerable level and preserves the lubricant performance of the MQL, is the cause of the lowest Vb value of 90 & mu;m.

Açıklama

Anahtar Kelimeler

Tool wear, Surface roughness, Cooling, Sustainable manufacturing, Tribology

Kaynak

Journal of Manufacturing Processes

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

103

Sayı

Künye