Quenching behavior of semilinear heat equations with singular boundary conditions

dc.contributor.authorSelcuk, B.
dc.contributor.authorOzalp, N.
dc.date.accessioned2024-09-29T16:21:24Z
dc.date.available2024-09-29T16:21:24Z
dc.date.issued2015
dc.departmentKarabük Üniversitesien_US
dc.description.abstractIn this article, we study the quenching behavior of solution to the semilinear heat equation (Formula presented) with f(v) = u-r or (1 – v)–r and (Formula presented) For this, we utilize the quenching problem ut=uxx with ux(0,t)=u-p(0,t), ux(a,t)=(1-u(a,t))-q. In the second problem, if u0 is an upper solution (a lower solution) then we show that quenching occurs in a finite time, the only quenching point is x=0 (x=a) and utblows up at quenching time. Further, we obtain a local solution by using positive steady state. In the first problem, we first obtain a local solution by using monotone iterations. Finally, for f(v)=-v-r ((1-v)-r), if v0 is an upper solution (a lower solution) then we show that quenching occurs in a finite time, the only quenching point is x=0 (x=a) and vt blows up at quenching time. © 2015 Texas State University.en_US
dc.identifier.issn1072-6691
dc.identifier.scopus2-s2.0-84950984473en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14619/9747
dc.identifier.volume2015en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherTexas State University - San Marcosen_US
dc.relation.ispartofElectronic Journal of Differential Equationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHeat equationen_US
dc.subjectMaximum principleen_US
dc.subjectMonotone iterationen_US
dc.subjectQuenchingen_US
dc.subjectSingular boundary conditionen_US
dc.titleQuenching behavior of semilinear heat equations with singular boundary conditionsen_US
dc.typeArticleen_US

Dosyalar