Reinforcement Learning-Based Adaptive Operator Selection

dc.authoridAydin, Mehmet/0000-0002-4890-5648
dc.contributor.authorDurgut, Rafet
dc.contributor.authorAydin, Mehmet Emin
dc.date.accessioned2024-09-29T15:50:51Z
dc.date.available2024-09-29T15:50:51Z
dc.date.issued2021
dc.departmentKarabük Üniversitesien_US
dc.description4th International Conference on Optimization and Learning (OLA) -- JUN 21-23, 2021 -- Catania, ITALYen_US
dc.description.abstractMetaheuristic and swarm intelligence approaches require devising optimisation algorithms with operators to let produce neighbouring solutions to conduct a move. The efficiency of algorithms using single operator remains recessive in comparison with those with multiple operators. However, use of multiple operators require a selection mechanism, which may not be always as productive as expected; therefore an adaptive selection scheme is always needed. In this study, an experience-based, reinforcement learning algorithm has been used to build an adaptive selection scheme implemented to work with a binary artificial bee colony algorithm in which the selection mechanism learns when and subject to which circumstances an operator can help produce better and worse neighbours. The implementations have been tested with commonly used benchmarks of uncapacitated facility location problem. The results demonstrates that the selection scheme developed based on reinforcement learning, which can also be named as smart selection scheme, performs much better that state-of-art adaptive selection schemes.en_US
dc.identifier.doi10.1007/978-3-030-85672-4_3
dc.identifier.endpage41en_US
dc.identifier.isbn978-3-030-85671-7
dc.identifier.isbn978-3-030-85672-4
dc.identifier.issn1865-0929
dc.identifier.issn1865-0937
dc.identifier.scopus2-s2.0-85115160602en_US
dc.identifier.scopusqualityQ4en_US
dc.identifier.startpage29en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-030-85672-4_3
dc.identifier.urihttps://hdl.handle.net/20.500.14619/3763
dc.identifier.volume1443en_US
dc.identifier.wosWOS:001054800900003en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer International Publishing Agen_US
dc.relation.ispartofOptimization and Learning, Ola 2021en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaptive operator selectionen_US
dc.subjectReinforcement learningen_US
dc.subjectArtificial bee colonyen_US
dc.subjectUncapacitated Facility Location Problem (UFLP)en_US
dc.titleReinforcement Learning-Based Adaptive Operator Selectionen_US
dc.typeConference Objecten_US

Dosyalar