Efficient FPGA-Based Real-Time Implementation of Model Predictive Control for Single-Phase Direct Matrix Converter
Küçük Resim Yok
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Taylor & Francis Inc
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Finite control set model predictive control (FCS-MPC) is an optimal control strategy that solves user-defined objective functions to determine the best control action for the next time interval. Real-time implementations of model predictive control techniques are quite challenging for certain topologies due to computation complexities. In this paper, key aspects of achieving robust, reliable, and efficient field programmable gate arrays (FPGAs) based model predictive control are presented for single-phase direct matrix topology. The effectiveness of FPGA-based model predictive control is validated experimentally using an ALTERA Cyclone IV FPGA. Experimental results show that an effective load current control performance is obtained by taking advantage of pipelining capability of the FPGA device. The tradeoff between control bandwidth, FPGA resources, and hardware utilization is discussed.
Açıklama
Anahtar Kelimeler
model predictive control, digital control, matrix converter, FPGA
Kaynak
Electric Power Components and Systems
WoS Q Değeri
Q4
Scopus Q Değeri
Q3
Cilt
48
Sayı
16-17