Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory

dc.authoridEltaher, Mohamed A./0000-0003-3116-2101
dc.authoridAbdelrahman, Alaa Ahmed/0000-0003-4006-743X
dc.authoridShaltout, Dr. Ramy/0000-0002-8369-7215
dc.authoridEsen, Ismail/0000-0002-7853-1464
dc.contributor.authorAbdelrahman, Alaa A.
dc.contributor.authorEsen, Ismail
dc.contributor.authorOzarpa, Cevat
dc.contributor.authorShaltout, Ramy
dc.contributor.authorEltaher, Mohamed A.
dc.contributor.authorAssie, Amr E.
dc.date.accessioned2024-09-29T16:06:07Z
dc.date.available2024-09-29T16:06:07Z
dc.date.issued2021
dc.departmentKarabük Üniversitesien_US
dc.description.abstractThe goal of this manuscript is to develop a nonclassical size dependent model to study and analyze the dynamic behaviour of the perforated Reddy nanobeam under moving load including the length scale and microstructure effects, that not considered before. The kinematic assumption of the third order shear deformation beam theory in conjunction with modified continuum constitutive equation of nonlocal strain gradient (NLSG) elasticity are proposed to derive the equation of motion of nanobeam included size scale (nonlocal) and microstructure (strain gradient) effects. Mathematical expressions for the equivalent geometrical parameters due to the perforation process of regular squared pattern are developed. Based on the virtual work principle, the governing equations of motion of perforated Reddy nanobeams are derived. Based on Navier's approach, an analytical solution procedure is developed to obtain free and forced vibration response under moving load. The developed methodology is verified and checked with previous works. Impacts of perforation, moving load velocity, microstructure parameter and nonlocal size scale effects on the dynamic and vibration responses of perforated Reddy nanobeam structures have been investigated in a wide context. The obtained results are supportive for the design of MEMS/NEMS structures such as frequency filters, resonators, relay switches, accelerometers, and mass flow sensors, with perforation.en_US
dc.identifier.doi10.12989/sss.2021.28.4.515
dc.identifier.endpage533en_US
dc.identifier.issn1738-1584
dc.identifier.issn1738-1991
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85129109565en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage515en_US
dc.identifier.urihttps://doi.org/10.12989/sss.2021.28.4.515
dc.identifier.urihttps://hdl.handle.net/20.500.14619/6629
dc.identifier.volume28en_US
dc.identifier.wosWOS:000706992300006en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherTechno-Pressen_US
dc.relation.ispartofSmart Structures and Systemsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectanalytical solutionen_US
dc.subjectdynamic analysis of moving loaden_US
dc.subjecthigher order shear deformationen_US
dc.subjectnonlocal strain gradient theoryen_US
dc.subjectperforated nanobeamen_US
dc.titleDynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theoryen_US
dc.typeArticleen_US

Dosyalar