Modeling of Compressive Strength Parallel to Grain of Heat Treated Scotch Pine (Pinus sylvestris L.) Wood by Using Artificial Neural Network

dc.authoridERKAYMAZ, OKAN/0000-0002-1996-8623
dc.authoridBas, Hasan/0000-0001-5214-3394
dc.contributor.authorYapici, Fatih
dc.contributor.authorEsen, Rasit
dc.contributor.authorErkaymaz, Okan
dc.contributor.authorBas, Hasan
dc.date.accessioned2024-09-29T16:09:55Z
dc.date.available2024-09-29T16:09:55Z
dc.date.issued2015
dc.departmentKarabük Üniversitesien_US
dc.description.abstractIn this study, the compressive strength of heat treated Scotch Pine was modeled using artificial neural network. The compressive strength (CS) value parallel to grain was determined after exposing the wood to heat treatment at temperature of 130, 145, 160, 175, 190 and 205 degrees C for 3, 6, 9, 12 hours. The experimental data was evaluated by using multiple variance analysis. Secondly, the effect of heat treatment on the CS of samples was modeled by using artificial neural network (ANN).en_US
dc.identifier.doi10.5552/drind.2015.1434
dc.identifier.endpage352en_US
dc.identifier.issn0012-6772
dc.identifier.issn1847-1153
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-84953857259en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage347en_US
dc.identifier.urihttps://doi.org/10.5552/drind.2015.1434
dc.identifier.urihttps://hdl.handle.net/20.500.14619/7827
dc.identifier.volume66en_US
dc.identifier.wosWOS:000368913700011en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherZagreb Univ, Fac Forestryen_US
dc.relation.ispartofDrvna Industrijaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectwooden_US
dc.subjectheat treatmenten_US
dc.subjectArtificial Neural Networken_US
dc.subjectcompressive strengthen_US
dc.titleModeling of Compressive Strength Parallel to Grain of Heat Treated Scotch Pine (Pinus sylvestris L.) Wood by Using Artificial Neural Networken_US
dc.typeArticleen_US

Dosyalar