Q-Learning for Securing Cyber-Physical Systems : A survey
Küçük Resim Yok
Tarih
2020
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ieee
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
A cyber-physical system (CPS) is a term that implements mainly three parts, Physical elements, communication networks, and control systems. Currently, CPS includes the Internet of Things (IoT), Internet of Vehicles (IoV), and many other systems. These systems face many security challenges and different types of attacks, such as Jamming, DDoS.CPS attacks tend to be much smarter and more dynamic; thus, it needs defending strategies that can handle this level of intelligence and dynamicity. Last few years, many researchers use machine learning as a base solution to many CPS security issues. This paper provides a survey of the recent works that utilized the Q-Learning algorithm in terms of security enabling and privacy-preserving. Different adoption of Q-Learning for security and defending strategies are studied. The state-of-the-art of Q-learning and CPS systems are classified and analyzed according to their attacks, domain, supported techniques, and details of the Q-Learning algorithm. Finally, this work highlight The future research trends toward efficient utilization of Q-learning and deep Q-learning on CPS security.
Açıklama
2nd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) -- JUN 26-27, 2020 -- TURKEY
Anahtar Kelimeler
CPS, Q-Learning, Reinforcment Learning, Security
Kaynak
2nd International Congress On Human-Computer Interaction, Optimization and Robotic Applications (Hora 2020)
WoS Q Değeri
N/A
Scopus Q Değeri
N/A