Detection of current transport mechanisms for graphene-doped-PVA interlayered metal/semiconductor structures

Küçük Resim Yok

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The possible current-transport mechanisms (CTMs) of Au/(%7Gr-doped)PVA/n-GaAs structure was examined between 80 K and 360 K. The forward bias semi-logarithmic I-V curves have two different linear regions; as 0.30 V and 0.56 V (Region I), and 0.72 V and 0.92 V (Region II). Contrary to classical thermionic emission (TE) theory, the ideality factor (n) decreases but the zero bias barrier height (Phi(Bo)) increases while the temperature increases for both regions. The plots of n vs Phi(B0), q/2 kT vs Phi(Bo) and q/2 kT vs n(-1)-1 have two linear regions from 80 K to 160 K and 180 K-360 K. This indicates the Double Gaussian Distribution (DGD). Experimental Richardson constant (A*) was acquired as 8.73 A/cm(2)K(2) and 8.14 A/cm(2)K(2) for Region I and II which are quite close to theoretical A* value for n-GaAs. Consequently, the predominant CTMs at M/S interfaces can be clarified by DGD on the basis of TE.

Açıklama

12th International Symposium on Hysteresis Modeling and Micromagnetics (HMM) -- MAY 19-22, 2019 -- Heraklion, GREECE

Anahtar Kelimeler

Current-transport mechanisms, Metal-polymer-semicondutor, Thermionic emission, Barrier height, Graphene doping

Kaynak

Physica B-Condensed Matter

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

598

Sayı

Künye