Hydrothermal liquefaction of olive oil residues

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Hydrothermal liquefaction (HTL) of olive oil residues was conducted at various temperatures (250, 270, 300 and 330 degrees C) and residence times (5, 15, 30, and 60 min). The effect of metal chlorides (AlCl3 and SnCl2) on product yields and compositions was investigated under optimum conditions (300 degrees C for 15 min). Bio-oil and solid residue yields from the non-catalytic run were 30.8 and 31.8 wt%, respectively. Use of metal chlorides led to decreased bio-oil yields and increased solid residue yields. Experiments were also carried out using methanol, with and without catalysts, and under identical conditions. The bio-oil yield from the non-catalytic supercritical methanol liquefaction (SCMEL) was 33.5 wt%, increasing to 40.3 wt% with AlCl3, however, SnCl2 had almost no effect on bio-oil yield. The heating values of bio-oils from HTL runs were higher than those of corresponding SCMEL runs, and the highest heating value of bio-oil (34 MJ/kg) was obtained with AlCl3. Phenols and ketones were major bio-oil constituents in the HTL runs, whereas esters were the most abundant compounds in bio-oils from SCMEL runs.

Açıklama

Anahtar Kelimeler

Hydrothermal liquefaction, Supercritical methanol, Waste biomass, Metal chlorides

Kaynak

Sustainable Chemistry and Pharmacy

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

22

Sayı

Künye