Hydrothermal Liquefaction of Lignocellulosic Biomass Using Potassium Fluoride-Doped Alumina

dc.authoridALPER, Koray/0000-0001-6845-2087
dc.authoridKaragoz, Selhan/0000-0003-4794-6525
dc.authoridTekin, Kubilay/0000-0002-9373-3208
dc.contributor.authorAlper, Koray
dc.contributor.authorTekin, Kubilay
dc.contributor.authorKaragoz, Selhan
dc.date.accessioned2024-09-29T16:00:59Z
dc.date.available2024-09-29T16:00:59Z
dc.date.issued2019
dc.departmentKarabük Üniversitesien_US
dc.description.abstractHydrothermal liquefaction (HTL) of spruce wood was performed without and with the use of a potassium fluoride-doped alumina catalyst (KF/Al2O3) in a bench-top reactor. HTL runs were performed at 250, 300, and 350 degrees C with residence times of 15, 30, and 60 min. The effects of the catalyst at different catalyst loadings (in concentrations from 10 to 40 wt % of the lignocellulosic biomass) on the bio-oil and solid residue yields as well as their properties were investigated. The use of the catalyst increased the bio-oil yields over twofold and reduced char yields. Gas chromatography-mass spectrometry analysis revealed that the bio-oil from the noncatalytic and catalytic runs consisted of aldehydes, ketones, phenols, acids, and esters. Among these components, phenolic compounds were dominant in both the noncatalytic and catalytic runs. The relative yields of phenolic compounds increased with catalyst use. The highest heating value was estimated to be approximately 29 MJ/kg. The boiling point distributions of the bio-oils from both runs revealed that the total naphtha fraction (light and heavy) was comparable to that of crude oil.en_US
dc.description.sponsorshipKarabiik University [KBU-BAP-14/2-DR-010]en_US
dc.description.sponsorshipFinancial support from Karabiik University under the contract KBU-BAP-14/2-DR-010 is gratefully acknowledged.en_US
dc.identifier.doi10.1021/acs.energyfuels.8b04381
dc.identifier.endpage3256en_US
dc.identifier.issn0887-0624
dc.identifier.issn1520-5029
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85064736954en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage3248en_US
dc.identifier.urihttps://doi.org/10.1021/acs.energyfuels.8b04381
dc.identifier.urihttps://hdl.handle.net/20.500.14619/5469
dc.identifier.volume33en_US
dc.identifier.wosWOS:000465486100056en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherAmer Chemical Socen_US
dc.relation.ispartofEnergy & Fuelsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectWoody Biomassen_US
dc.subjectTransesterificationen_US
dc.subjectOilen_US
dc.subjectConversionen_US
dc.subjectBiodieselen_US
dc.subjectChemicalsen_US
dc.subjectKf/Al2o3en_US
dc.subjectCatalysten_US
dc.subjectMethanolen_US
dc.subjectLigninen_US
dc.titleHydrothermal Liquefaction of Lignocellulosic Biomass Using Potassium Fluoride-Doped Aluminaen_US
dc.typeArticleen_US

Dosyalar