Use of natural polymer to obtain clean hydrogen energy
Küçük Resim Yok
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Karabük Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Günümüzde en önemli çevre kirliliklerinden biri olan hava kirliliği, en çok enerji ihtiyacının karşılanmasından etkilenmektedir. Bu nedenle temiz enerji üretimi üzerinde durulması gereken güncel konulardan biridir. Çevreye zarar vermeyen ve yenilenebilir enerji kaynaklarından biri olan hidrojen bu problemler için alternatif bir enerji kaynağı olarak değerlendirilebilir. Ancak birincil enerji kaynağı olarak kullanılamayacağından, hidrojen enerjisinin kullanımı için depolama, düşük maliyet ve yakıt hücrelerine uygulama konularında teknolojik çalışmaların geliştirilmesi gerekmektedir. Bu tezde, solvent kullanmadan en iyi katalitik aktivitelerden birini sergileyen dimetilamin borandan (DMAB) temiz hidrojen elde etmek için tri-metalik RuNiPd nanokümelerinin stabilizasyonu için destek malzemesi olarak doğal polimer (at kestanesi) kullanılmıştır. Ayrıca katı hidrojen depolama malzemesi olarak kullanılan DMAB'ın yeşil dehidrojenasyonu sonucu hidrojen gazı elde etmek için basit mekanik karıştırma tekniği ve yeşil sentez prensibi kullanılmıştır. Üç metalik RuNiPd nanokümeleri, DMAB'nin at kestanesi varlığında yeşil (çözücü içermeyen) dehidrojenasyonu yoluyla sinerjik olarak oluşturulmuştur. Deneyler solventsiz reaksiyon ortamında, Ru(acac)3, Ni(acac)2 ve Pd(acac)2 her biri %3 oranında alınarak (toplamda %9.0) 50 mg at kestanesi varlığında 2.0 mmol DMAB ile başlanarak yapıldı ve 35.0 ± 0.1°C'de DMAB'nin yeşil dehidrojenasyonunda at kestanesi üzerine yüklenen tri-metalik RuNiPd nanokümelerinin oluşumu ve karakterizasyonu değerlendirildi. Bu nanokümelerin aktivitesi birçok parametreyle (sıcaklık, zaman, partikül boyutu, TOF, katalitik aktivite DMAB/ katalizör oranı, aktivasyon enerjisi, % verim, yeniden kullanılabilirlik) incelendi. DMAB'ın yeşil dehidrojenasyonunda en aktif katalizörü belirledikten sonra, bu katalizör (tri-metalik RuNiPd@HC NC'ler) ve yeşil dehidrojenasyon sonrası elde edilen ürünler TEM, SEM, SEM/EDX, BET, XRD, XPS, ICP MS, FTIR and UV vis spektroskopileri kullanılarak tanımlandı. Bu tezde, solventsiz ortamda çalışılarak DMAB'dan hidrojen gazı elde edilmiş, toksik olmayan, kolay bozunabilen ve tekrar kullanılabilir, kullanım sonrası bozulmayan katalizörler bulunmuş ve doğal organik polimer olan at kestanesi için alternatif bir kullanım alanı oluşturulmuştur.
Air pollution, which is one of today's most important issues, is mostly affected by meeting energy needs. This clean energy generation is one of the current products that should receive focus. Hydrogen, a renewable energy source that does not harm the environment, can be considered an alternative energy source for these problems. However, since it cannot be used as a primary source of energy, it is necessary to develop technological studies on storage, cost reductions and fuel cell applications for use as alternative sources of energy. In this thesis, a natural polymer (Horse Chestnut) was used as a support material for the stabilization of tri-metallic RuNiPd nanoclusters to extract clean hydrogen from dimethylamine borane (DMAB), which has exhibited the best catalytic activities without the usage of solvents. Furthermore, a simple mechanical mixing technique and the green synthesis principle were used to obtain hydrogen gas from the green dehydrogenation of DMAB, which is used as a solid hydrogen storage material. Tri-metallic RuNiPd nanoclusters were formed synergistically through green (solvent-free) dehydrogenation of DMAB in the presence of Horse Chestnut. Experiments began with 3.0% each of Ru(acac)3, Ni(acac)2, and Pd(acac)2 (9.0 % total) loaded on 50 mg of Horse Chestnut and 2.0 mmol DMAB in the solvent-free reaction medium at 35.0 ± 0.1°C, and the production and characterization of tri-metallic RuNiPd nanoclusters were evaluated. The activity of these nanoclusters was examined with many parameters (temperature, time, particle size, TOF, catalytic activity, DMAB/catalyst ratio, activation energy, yield%, reusability). Following the identification of the most effective catalyst for green DMAB dehydrogenation, a catalyst (tri-metallic RuNiPd@HC NCs) and the products obtained after green dehydrogenation were identified using TEM, SEM, SEM/EDX, BET, XRD, XPS, ICP MS, FTIR and UV vis spectroscopies. In this thesis, by working in a solvent-free environment, hydrogen gas was obtained from DMAB, non-toxic, easily degradable and reusable catalysts that do not degrade after use was found and an alternative area of usage for Horse Chestnut, a natural organic polymer, was created.
Air pollution, which is one of today's most important issues, is mostly affected by meeting energy needs. This clean energy generation is one of the current products that should receive focus. Hydrogen, a renewable energy source that does not harm the environment, can be considered an alternative energy source for these problems. However, since it cannot be used as a primary source of energy, it is necessary to develop technological studies on storage, cost reductions and fuel cell applications for use as alternative sources of energy. In this thesis, a natural polymer (Horse Chestnut) was used as a support material for the stabilization of tri-metallic RuNiPd nanoclusters to extract clean hydrogen from dimethylamine borane (DMAB), which has exhibited the best catalytic activities without the usage of solvents. Furthermore, a simple mechanical mixing technique and the green synthesis principle were used to obtain hydrogen gas from the green dehydrogenation of DMAB, which is used as a solid hydrogen storage material. Tri-metallic RuNiPd nanoclusters were formed synergistically through green (solvent-free) dehydrogenation of DMAB in the presence of Horse Chestnut. Experiments began with 3.0% each of Ru(acac)3, Ni(acac)2, and Pd(acac)2 (9.0 % total) loaded on 50 mg of Horse Chestnut and 2.0 mmol DMAB in the solvent-free reaction medium at 35.0 ± 0.1°C, and the production and characterization of tri-metallic RuNiPd nanoclusters were evaluated. The activity of these nanoclusters was examined with many parameters (temperature, time, particle size, TOF, catalytic activity, DMAB/catalyst ratio, activation energy, yield%, reusability). Following the identification of the most effective catalyst for green DMAB dehydrogenation, a catalyst (tri-metallic RuNiPd@HC NCs) and the products obtained after green dehydrogenation were identified using TEM, SEM, SEM/EDX, BET, XRD, XPS, ICP MS, FTIR and UV vis spectroscopies. In this thesis, by working in a solvent-free environment, hydrogen gas was obtained from DMAB, non-toxic, easily degradable and reusable catalysts that do not degrade after use was found and an alternative area of usage for Horse Chestnut, a natural organic polymer, was created.
Açıklama
Lisansüstü Eğitim Enstitüsü, Çevre Mühendisliği Ana Bilim Dalı
Anahtar Kelimeler
Çevre Mühendisliği, Environmental Engineering