Asymptotics of the eigenvalues of a boundary value problem for the operator Schrodinger equation with boundary conditions nonlinearly dependent on the spectral parameter
Küçük Resim Yok
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Samara State Technical Univ
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
On the space H-1 = L-2(H, [0, 1]), where H is a separable Hilbert space, we study the asymptotic behavior of the eigenvalues of a boundary value problem for the operator Schrodinger equation for the case when one, and the same, spectral parameter participates linearly in the equation and quadratically in the boundary condition. Asymptotic formulae are obtained for the eigenvalues of the considered boundary value problem.
Açıklama
Anahtar Kelimeler
operator differential equations, spectrum, eigenvalue, asymp-totic formula, Hilbert space
Kaynak
Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta-Seriya-Fiziko-Matematicheskiye Nauki
WoS Q Değeri
N/A
Scopus Q Değeri
Q3
Cilt
25
Sayı
4