Asymptotics of the eigenvalues of a boundary value problem for the operator Schrodinger equation with boundary conditions nonlinearly dependent on the spectral parameter

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Samara State Technical Univ

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

On the space H-1 = L-2(H, [0, 1]), where H is a separable Hilbert space, we study the asymptotic behavior of the eigenvalues of a boundary value problem for the operator Schrodinger equation for the case when one, and the same, spectral parameter participates linearly in the equation and quadratically in the boundary condition. Asymptotic formulae are obtained for the eigenvalues of the considered boundary value problem.

Açıklama

Anahtar Kelimeler

operator differential equations, spectrum, eigenvalue, asymp-totic formula, Hilbert space

Kaynak

Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta-Seriya-Fiziko-Matematicheskiye Nauki

WoS Q Değeri

N/A

Scopus Q Değeri

Q3

Cilt

25

Sayı

4

Künye