ON FULLY IDEMPOTENT MODULES

Küçük Resim Yok

Tarih

2011

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Taylor & Francis Inc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

A submodule N of a module M is idempotent if N = Hom (M,N)N. The module M is fully idempotent if every submodule of M is idempotent. We prove that over a commutative ring, cyclic idempotent submodules of any module are direct summands. Counterexamples are given to show that this result is not true in general. It is shown that over commutative Noetherian rings, the fully idempotent modules are precisely the semisimple modules. We also show that the commutative rings over which every module is fully idempotent are exactly the semisimple rings. Idempotent submodules of free modules are characterized.

Açıklama

Anahtar Kelimeler

Fully idempotent module, Idempotent submodule

Kaynak

Communications in Algebra

WoS Q Değeri

Q4

Scopus Q Değeri

Q2

Cilt

39

Sayı

8

Künye