Rapid Casting of Biodegradable Porous Magnesium Scaffolds and Electrophoretic Deposition of 45S5 Bioactive Glass Nanoparticles Coatings on Porous Scaffolds: Characterization and In Vitro Bioactivity Analysis

dc.authoridTEMIZ, ABDURRAHIM/0000-0001-6885-1475
dc.authoridAkar, Neset/0000-0003-2933-4170
dc.authoridYasar, Mustafa/0000-0001-9354-3554
dc.contributor.authorTemiz, Abdurrahim
dc.contributor.authorYaser, Mustafa
dc.contributor.authorAlshemary, Ammar Z.
dc.contributor.authorAkar, Neset
dc.date.accessioned2024-09-29T15:54:49Z
dc.date.available2024-09-29T15:54:49Z
dc.date.issued2023
dc.departmentKarabük Üniversitesien_US
dc.description.abstractIn this study, three-dimensional (3D), biodegradable, porous magnesium (Mg) alloy scaffolds were fabricated using the rapid casting method. The casting models were welded onto a wax rod to produce a casting tree using a stereolithography (SLA) machine with castable wax. The model has a high surface area and porosity. The pore size, strut thickness, and porosity of the 3D porous scaffolds are 1.5 mm, 0.45 mm, and 71.68%, respectively. The relative density and surface area-to-volume ratio are also 3.53 and 5.43, respectively. The pure phase of 45S5 bioglass (BG) nanomaterial was successfully synthesized using the sol-gel method. The 45S5 BG was characterized using transmission electron microscope (TEM), energy-dispersive X-ray analysis (EDX), X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR), differential thermal analysis (DTA), thermogravimetric (TG) and derivative thermogravimetry (DTG) analyses. To improve the bioactivity and control the degradation rate of Mg alloy scaffolds, the porous surface of the Mg scaffold was coated with 45S5 BG nanomaterials using the electrophoretic deposition (EPD) method. The in vitro degradation test was then performed using simulated body fluid (SBF) for 48 h. The in vitro degradation test results showed that the mass loss percentages of both samples approached each other after 12 h. The uncoated sample lost more mass than the coated sample after 24 and 48 h. The results showed that the coated scaffolds had better bioactivity and greater resistance to degradation.en_US
dc.identifier.doi10.1007/s40962-022-00903-9
dc.identifier.endpage1882en_US
dc.identifier.issn1939-5981
dc.identifier.issn2163-3193
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85141413891en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage1871en_US
dc.identifier.urihttps://doi.org/10.1007/s40962-022-00903-9
dc.identifier.urihttps://hdl.handle.net/20.500.14619/4307
dc.identifier.volume17en_US
dc.identifier.wosWOS:000878974200001en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer Int Publ Agen_US
dc.relation.ispartofInternational Journal of Metalcastingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectrapid castingen_US
dc.subjectporous gyroid structureen_US
dc.subjectbiodegradable Mg alloyen_US
dc.subjectelectrophoretic depositionen_US
dc.titleRapid Casting of Biodegradable Porous Magnesium Scaffolds and Electrophoretic Deposition of 45S5 Bioactive Glass Nanoparticles Coatings on Porous Scaffolds: Characterization and In Vitro Bioactivity Analysisen_US
dc.typeArticleen_US

Dosyalar