Evaluation of nanoparticle shape factor on a laminar forced convective heat transfer characteristics of various nanofluids flow in a tube using single-phase numerical model

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Taylor & Francis Inc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Nanotechnology is advantageous in improving thermophysical properties and enhancing heat transfer rate compared with conventional fluids due to their superior thermophysical properties. These properties vary with many parameters such as concentration and shape. In this study, the effect of nanoparticles shape is numerically explored on heat transfer performance under a laminar flow regime (Re=500 and 2000) through the smooth tube. Heat transfer enhancement capability of the nanoparticle shapes with targeted reference to average Nusselt number, average Darcy friction factor, pumping power, and performance evaluation criterion have been investigated. Three types of nanofluids (Fe3O4/water, Al2O3/water, and GO/water) with various nanoparticle shapes (brick, cylindrical, platelet, and spherical) and different nanoparticle volume fractions (phi=1.0, 2.0, 3.0, and 4.0%) have been used as heat transfer fluid in analyzes. Numerical results show that heat transfer performance was greatly influenced by changing nanoparticle shapes. The highest average Nusselt number was obtained for GO/water nanofluid with platelet nanoparticle shape and phi=4.0%. Compared to water, Fe3O4/water, and Al2O3/water, the average Nusselt number in GO/water increased by 64.34%, 54.02%, and 43.41%, respectively. The highest performance evaluaton criterionwas obtained for the GO-water nanofluid with platelet nanoparticle shape at Re=2000. On the other hand, it is found that the Fe3O4/water nanofluid with platelets nanoparticle shape causes the highest pumping power compared with other analyzed nanofluids.

Açıklama

Anahtar Kelimeler

CFD, different nanoparticle shapes, laminar flow, nanofluids, performance evaluation criterion, thermo-hydraulic performance

Kaynak

Numerical Heat Transfer Part A-Applications

WoS Q Değeri

N/A

Scopus Q Değeri

Q2

Cilt

Sayı

Künye