Temperature-dependent thermal buckling and free vibration behavior of smart sandwich nanoplates with auxetic core and magneto-electro-elastic face layers

dc.authoridPehlivan, Fatih/0000-0003-2675-6124
dc.authoridAktas, Kerim Gokhan/0000-0002-8076-6799
dc.authoridEsen, Ismail/0000-0002-7853-1464
dc.contributor.authorAktas, Kerim Gokhan
dc.contributor.authorPehlivan, Fatih
dc.contributor.authorEsen, Ismail
dc.date.accessioned2024-09-29T15:51:24Z
dc.date.available2024-09-29T15:51:24Z
dc.date.issued2024
dc.departmentKarabük Üniversitesien_US
dc.description.abstractThis article addresses the thermomechanical thermal buckling and free vibration response of a novel smart sandwich nanoplate based on a sinusoidal higher-order shear deformation theory (SHSDT) with a stretching effect. In the proposed sandwich nanoplate, an auxetic core layer with a negative Poisson's ratio made of Ti-6Al-4V is sandwiched between Ti-6Al-4V rim layers and magneto-electro-elastic (MEE) face layers. The MEE face layers are homogenous volumetric mixtures of cobalt ferrite (CoFe2O4) and barium titanate (BaTiO3). The mechanical and thermal material properties of the auxetic core and MEE face layers are temperature-dependent. Using Hamilton's principle, governing equations are constructed. To characterize the size-dependent behavior of the nanoplate, governing equations are adapted with the nonlocal strain gradient theory (NSGT). By applying the principles of Navier's technique, closed-form solutions are obtained. Parametric simulations are carried out to examine the effects of auxetic core parameters, temperature-dependent material properties, nonlocal parameters, electric, magnetic, and thermal loads on the free vibration and thermal buckling behavior of the nanoplate. According to the simulation results, it is determined that the auxetic core parameters, temperature-dependent material properties, and nonlocal factors significantly affect the thermomechanical behavior of the nanoplate. The outcomes of this investigation are expected to contribute to the advancement of smart nano-electromechanical systems, transducers, and nanosensors characterized by lightweight, exceptional structural integrity and temperature sensitivity. Also, the auxetic core with a negative Poisson's ratio provides a metamaterial feature, and thanks to this feature, the proposed model has the potential to be used as an invisibility technology in sonar and radar-hiding applications.en_US
dc.description.sponsorshipKarabuk Universityen_US
dc.description.sponsorshipNo Statement Availableen_US
dc.identifier.doi10.1007/s11043-024-09698-0
dc.identifier.issn1385-2000
dc.identifier.issn1573-2738
dc.identifier.scopus2-s2.0-85192544555en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1007/s11043-024-09698-0
dc.identifier.urihttps://hdl.handle.net/20.500.14619/4044
dc.identifier.wosWOS:001220313500001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofMechanics of Time-Dependent Materialsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAuxetic coreen_US
dc.subjectNonlocal strain gradient theoryen_US
dc.subjectMagneto-electro-elastic nanoplateen_US
dc.subjectCobalt ferriteen_US
dc.subjectBarium titanateen_US
dc.titleTemperature-dependent thermal buckling and free vibration behavior of smart sandwich nanoplates with auxetic core and magneto-electro-elastic face layersen_US
dc.typeArticleen_US

Dosyalar