SPECTRAL MATRIX FOR STURM-LIOUVILLE OPERATORS ON TWO-SIDED UNBOUNDED TIME SCALES
Küçük Resim Yok
Tarih
2013
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Theta Foundation
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
We establish existence of a spectral matrix for Sturm-Liouville operators on two-sided unbounded time scales. A Parseval equality and an expansion in eigenfunctions formula are obtained in terms of the spectral matrix. Our results unify and extend the well-known results on existence of a spectral matrix for Sturm-Liouville operators on the whole real axis and their discrete analogs.
Açıklama
Anahtar Kelimeler
Time scale, delta derivative, nabla derivative, spectral matrix, Parseval equality, expansion in eigenfunctions
Kaynak
Journal of Operator Theory
WoS Q Değeri
Q3
Scopus Q Değeri
Q1
Cilt
70
Sayı
1