SPECTRAL MATRIX FOR STURM-LIOUVILLE OPERATORS ON TWO-SIDED UNBOUNDED TIME SCALES

Küçük Resim Yok

Tarih

2013

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Theta Foundation

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

We establish existence of a spectral matrix for Sturm-Liouville operators on two-sided unbounded time scales. A Parseval equality and an expansion in eigenfunctions formula are obtained in terms of the spectral matrix. Our results unify and extend the well-known results on existence of a spectral matrix for Sturm-Liouville operators on the whole real axis and their discrete analogs.

Açıklama

Anahtar Kelimeler

Time scale, delta derivative, nabla derivative, spectral matrix, Parseval equality, expansion in eigenfunctions

Kaynak

Journal of Operator Theory

WoS Q Değeri

Q3

Scopus Q Değeri

Q1

Cilt

70

Sayı

1

Künye