Data-Driven TD3 Control of IM Considering Magnetic Saturation and Temperature Effect
dc.contributor.author | Korpe, Ugur Ufuk | |
dc.contributor.author | Gokdag, Mustafa | |
dc.contributor.author | Gulbudak, Ozan | |
dc.date.accessioned | 2024-09-29T16:04:28Z | |
dc.date.available | 2024-09-29T16:04:28Z | |
dc.date.issued | 2024 | |
dc.department | Karabük Üniversitesi | en_US |
dc.description | 6th Global Power, Energy and Communication Conference (GPECOM) -- JUN 04-07, 2024 -- Budapest, HUNGARY | en_US |
dc.description.abstract | Induction machines (IM) are still widely used in the industry due to their advantages, such as low maintenance requirements and improved robustness. The field-oriented control (FOC), direct torque control (DTC), and model predictive control (MPC) techniques are used to control IM in high-performance control applications. The common disadvantage of these control techniques is that the control performances are negatively affected by changes in machine parameters, and machine parameters vary non-linearly depending on the magnetic saturation and temperature. To solve this negative affect, the control technique can be optimized by using a parameter estimation methods. Another solution to eliminate these negative effects is to design a reinforcement learning (RL)-based controller that regulates the control variables without the knowledge of machine parameters. In this study, IM speed control is performed using a twin-delayed deep deterministic policy gradient (TD3) agent. The dynamic and steady-state performance of the designed controller are compared with the traditional control techniques. Extensive simulation results have shown that the dynamic and steady-state performance of the designed controller is better than other control techniques. | en_US |
dc.description.sponsorship | IEEE | en_US |
dc.identifier.doi | 10.1109/GPECOM61896.2024.10582723 | |
dc.identifier.endpage | 184 | en_US |
dc.identifier.isbn | 979-8-3503-5108-8 | |
dc.identifier.isbn | 979-8-3503-5109-5 | |
dc.identifier.issn | 2832-7667 | |
dc.identifier.scopus | 2-s2.0-85199041185 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 179 | en_US |
dc.identifier.uri | https://doi.org/10.1109/GPECOM61896.2024.10582723 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14619/6129 | |
dc.identifier.wos | WOS:001268516300112 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | Proceedings 2024 Ieee 6th Global Power, Energy and Communication Conference, Ieee Gpecom 2024 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Induction motor | en_US |
dc.subject | parameter estimation | en_US |
dc.subject | reinforcement learning | en_US |
dc.subject | TD3 agent | en_US |
dc.title | Data-Driven TD3 Control of IM Considering Magnetic Saturation and Temperature Effect | en_US |
dc.type | Conference Object | en_US |