A NEW PROPOSED STACKING GENERALIZATION MODEL FOR DETECTING DDOS ATTACKS IN SDN ENVIRONMENT
dc.contributor.author | Alasali, Tasnim | |
dc.date.accessioned | 2023-08-02T06:29:49Z | |
dc.date.available | 2023-08-02T06:29:49Z | |
dc.date.issued | 2023-06 | |
dc.department | Lisansüstü Eğitim Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalı | en_US |
dc.description.abstract | The emergence of Software-Defined Networking (SDN) has revolutionized network infrastructure by providing greater control and operation over the network. The SDN controller, which serves as the operating system for SDN-based networks, executes various network applications and maintains network services and functionalities. However, the central control that SDN offers makes it vulnerable to Distributed Denial of Service (DDoS) attacks, which are the most common and critical attacks targeting both traditional and new-generation networks, including the Internet of Things (IoT), cloud computing, and fifth generation (5G) communication networks. Despite the plethora of traditional detection solutions available, DDoS attacks continue to increase in frequency, volume, and severity. To address this, machine learning is now widely used for rapid attack detection. This research proposes a predictive model for DDoS prediction in an SDN environment. The model is based on stacking various classifiers in two levels, namely the Base level and the Meta level, which combine diverse heterogeneous learners to produce robust model outcomes. Multiple metrics were used to evaluate the model's performance, including accuracy, precision, recall, F1-scores, and Area Under the ROC Curve (AUC) values. The predictive model achieved a 99% accuracy rate in prediction, with a precision score, sensitivity, and specificity all at 99%. | en_US |
dc.description.abstract | Yazılım Tanımlı Ağ Oluşturmanın (SDN) ortaya çıkışı, ağ üzerinde daha fazla kontrol ve operasyon sağlayarak ağ altyapısında devrim yarattı. SDN tabanlı ağlar için işletim sistemi olarak hizmet veren SDN denetleyicisi, çeşitli ağ uygulamalarını yürütür ve ağ hizmetlerini ve işlevlerini sürdürür. Bununla birlikte, SDN'nin sunduğu merkezi kontrol, onu Nesnelerin İnterneti (IoT), bulut bilgi işlem dahil olmak üzere hem geleneksel hem de yeni nesil ağları hedefleyen en yaygın ve kritik saldırılar olan Dağıtılmış Hizmet Reddi (DDoS) saldırılarına karşı savunmasız hale getirir ve beşinci nesil (5G) iletişim ağları. Mevcut geleneksel algılama çözümlerinin bolluğuna rağmen, DDoS saldırılarının sıklığı, hacmi ve şiddeti artmaya devam ediyor. Bunu ele almak için, makine öğrenimi artık hızlı saldırı tespiti için yaygın olarak kullanılmaktadır. Bu araştırma, bir SDN ortamında DDoS tahmini için tahmine dayalı bir model önermektedir. Model, sağlam model sonuçları üretmek için çeşitli heterojen öğrenicileri birleştiren Temel düzey ve Meta düzey olmak üzere iki düzeyde çeşitli sınıflandırıcıların istiflenmesine dayanmaktadır. Modelin performansını değerlendirmek için doğruluk, kesinlik, geri çağırma, F1 puanları ve ROC Eğrisi Altındaki Alan (AUC) değerleri dahil olmak üzere birden fazla metrik kullanıldı. Tahmine dayalı model, tamamı %99'da kesinlik puanı, duyarlılık ve özgüllük ile tahminde %99'luk bir doğruluk oranı elde etti." | en_US] |
dc.identifier.uri | https://hdl.handle.net/20.500.14619/2844 | |
dc.identifier.uri | https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=a0OMTmEd_3mfOBxT8SiBTO-JAe4Vdtf_PAnxAF1AyqrcUGbV54mTVQ08WcIidDCI | |
dc.identifier.yoktezid | 813750 | en_US |
dc.language.iso | en | en_US |
dc.relation.publicationcategory | Tez | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Software-Defined Network (SDN) | en_US |
dc.subject | Security | en_US |
dc.subject | DDoS Attacks | en_US |
dc.subject | Machine Learning (ML) | en_US |
dc.subject | Stacking Classifier | en_US |
dc.subject | RYU. | en_US |
dc.subject | Yazılım Tanımlı Ağ (SDN) | en_US |
dc.subject | Güvenlik | en_US |
dc.subject | DDoS Saldırıları | en_US |
dc.subject | Makine Öğrenimi (ML) | en_US |
dc.subject | İstifleme Sınıflandırıcı | en_US |
dc.subject | RYU. | en_US |
dc.title | A NEW PROPOSED STACKING GENERALIZATION MODEL FOR DETECTING DDOS ATTACKS IN SDN ENVIRONMENT | en_US |
dc.title.alternative | SDN ORTAMINDA DDOS SALDIRILARINI TESPİT ETMEK İÇİN YENİ BİR İSTİFLEME GENELLEŞTİRME MODELİ | en_US |
dc.type | Master Thesis | en_US |