A data-driven approach for diagnosing degradation in lithium-ion batteries using data transformation techniques and a novel deep neural network
Küçük Resim Yok
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Pergamon-Elsevier Science Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Accurate diagnosis of Lithium -ion batteries (Li -ion batteries) degradation plays a critical role in improving the maintenance of energy storage technology. This paper presents a method based on a novel deep network model combined with a data transformation technique to diagnose Li -ion battery degradation modes. Different from conventional studies based on specific experimental and numerical methods to estimate and predict the degradation, the proposed method is based on data -driven approach, by leveraging datasets consisting of voltage/capacity curves, these were converted into incremental capacity (IC) curves and then transformed into images using the gramian angular summation field (GASF) technique. The study adopted two models: Inception -v3 and the proposed model, both underwent fine-tuning and a subsequent transfer learning process. Degradation modes, namely loss of lithium inventory (LLI) and the loss of active materials in both the positive (LAMPE) and negative electrodes (LAMNE), were diagnosed in relation to IC curves. Finally, the model was tested using two different datasets, and the results showed that the proposed method achieved high performance, especially across three Li -ion batteries, three degradation modes, three cells, and various cycles (totaling 378 cases) the proposed method outperformed in 233 cases, thereby outperforming other methods in comparison. Our method provides a flexible data -driven approach that accurately predicts various degradation modes across different cell chemistries throughout their lifespan.
Açıklama
Anahtar Kelimeler
Lithium -ion battery, Battery health diagnostics and prognostics, Degradation modes, Deep learning, Deep neural networks
Kaynak
Computers & Electrical Engineering
WoS Q Değeri
N/A
Scopus Q Değeri
Q1
Cilt
117