Engineering of GO/MWCNT/RuO2 ternary aerogel for high-performance supercapacitor
dc.authorid | korkmaz, satiye/0000-0002-7592-3366 | |
dc.authorid | KARAMAN, CEREN/0000-0001-9148-7253 | |
dc.contributor.author | Karimi, Fatemeh | |
dc.contributor.author | Korkmaz, Satiye | |
dc.contributor.author | Karaman, Ceren | |
dc.contributor.author | Karaman, Onur | |
dc.contributor.author | Kariper, I. Afsin | |
dc.date.accessioned | 2024-09-29T15:57:13Z | |
dc.date.available | 2024-09-29T15:57:13Z | |
dc.date.issued | 2022 | |
dc.department | Karabük Üniversitesi | en_US |
dc.description.abstract | It is of great importance to fabricate high-performance electrode materials via a facile fabrication pathway to be utilized in energy storage systems, specifically in supercapacitors. Herein, ruthenium(IV) oxide (RuO2) was decorated onto the nanocomposite of graphene oxide (GO) and functionalized multi-walled carbon nanotubes (MWCNT) via straight forward production pathway for the first time, and the resultant nanostructure was then characterized physicochemically via x-ray diffraction spectroscopy (XRD), Fourier transform infrared spectros-copy (FTIR), field-emission scanning electron microscope (FESEM), and energy dispersive X-ray analysis (EDX). The fabricated nanostructure was employed as the electrode material to develop a high-energy symmetrical supercapacitor cell. The electrochemical performance of the as-assembled supercapacitor was assessed by cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) techniques. The highest specific capacitance was achieved as 514.9F.g(- 1) at a current density of 0.5 A.g(- 1). Moreover, even at a high current density of 10.0 A.g(- 1), the specific capacitance value was computed still as high as 329.3F.g(- 1). The superior capacitance retention feature (94.38 % at the end of 5,000th consecutive CV cycles) revealed the outstanding electrochemical activity of the electrode material. The attained energy density of 37.96 W.h.kg(- 1) (at a power density of 8.33 kW.kg(- 1)) implied the potential application of the proposed supercapacitor cells as a high-energy system. | en_US |
dc.description.sponsorship | BAP project [FBA-2020-9885] | en_US |
dc.description.sponsorship | The authors thank ERUE-BAP. This study is supported by the BAP project (FBA-2020-9885). | en_US |
dc.identifier.doi | 10.1016/j.fuel.2022.125398 | |
dc.identifier.issn | 0016-2361 | |
dc.identifier.issn | 1873-7153 | |
dc.identifier.scopus | 2-s2.0-85135105196 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.fuel.2022.125398 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14619/4688 | |
dc.identifier.volume | 329 | en_US |
dc.identifier.wos | WOS:000875037500004 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Sci Ltd | en_US |
dc.relation.ispartof | Fuel | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Aerogel | en_US |
dc.subject | Supercapacitor | en_US |
dc.subject | High-energy density | en_US |
dc.subject | GO/MWCNT/RuO2 | en_US |
dc.title | Engineering of GO/MWCNT/RuO2 ternary aerogel for high-performance supercapacitor | en_US |
dc.type | Article | en_US |