Engineering of GO/MWCNT/RuO2 ternary aerogel for high-performance supercapacitor

dc.authoridkorkmaz, satiye/0000-0002-7592-3366
dc.authoridKARAMAN, CEREN/0000-0001-9148-7253
dc.contributor.authorKarimi, Fatemeh
dc.contributor.authorKorkmaz, Satiye
dc.contributor.authorKaraman, Ceren
dc.contributor.authorKaraman, Onur
dc.contributor.authorKariper, I. Afsin
dc.date.accessioned2024-09-29T15:57:13Z
dc.date.available2024-09-29T15:57:13Z
dc.date.issued2022
dc.departmentKarabük Üniversitesien_US
dc.description.abstractIt is of great importance to fabricate high-performance electrode materials via a facile fabrication pathway to be utilized in energy storage systems, specifically in supercapacitors. Herein, ruthenium(IV) oxide (RuO2) was decorated onto the nanocomposite of graphene oxide (GO) and functionalized multi-walled carbon nanotubes (MWCNT) via straight forward production pathway for the first time, and the resultant nanostructure was then characterized physicochemically via x-ray diffraction spectroscopy (XRD), Fourier transform infrared spectros-copy (FTIR), field-emission scanning electron microscope (FESEM), and energy dispersive X-ray analysis (EDX). The fabricated nanostructure was employed as the electrode material to develop a high-energy symmetrical supercapacitor cell. The electrochemical performance of the as-assembled supercapacitor was assessed by cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) techniques. The highest specific capacitance was achieved as 514.9F.g(- 1) at a current density of 0.5 A.g(- 1). Moreover, even at a high current density of 10.0 A.g(- 1), the specific capacitance value was computed still as high as 329.3F.g(- 1). The superior capacitance retention feature (94.38 % at the end of 5,000th consecutive CV cycles) revealed the outstanding electrochemical activity of the electrode material. The attained energy density of 37.96 W.h.kg(- 1) (at a power density of 8.33 kW.kg(- 1)) implied the potential application of the proposed supercapacitor cells as a high-energy system.en_US
dc.description.sponsorshipBAP project [FBA-2020-9885]en_US
dc.description.sponsorshipThe authors thank ERUE-BAP. This study is supported by the BAP project (FBA-2020-9885).en_US
dc.identifier.doi10.1016/j.fuel.2022.125398
dc.identifier.issn0016-2361
dc.identifier.issn1873-7153
dc.identifier.scopus2-s2.0-85135105196en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1016/j.fuel.2022.125398
dc.identifier.urihttps://hdl.handle.net/20.500.14619/4688
dc.identifier.volume329en_US
dc.identifier.wosWOS:000875037500004en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofFuelen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAerogelen_US
dc.subjectSupercapacitoren_US
dc.subjectHigh-energy densityen_US
dc.subjectGO/MWCNT/RuO2en_US
dc.titleEngineering of GO/MWCNT/RuO2 ternary aerogel for high-performance supercapacitoren_US
dc.typeArticleen_US

Dosyalar