Dual-Determination of Modulation Types and Signal-to-Noise Ratios Using 2D-ASIQH Features for Next Generation of Wireless Communication Systems

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ieee-Inst Electrical Electronics Engineers Inc

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In order to pursue rapid development of the new generation of wireless communication systems and elevate their security and efficiency, this paper proposes a novel scheme for automatic dual determination of modulation types and signal to noise ratios (SNR) for next generations of wireless communication systems, fifth-generation (5G) and beyond. The proposed scheme adopts unique signatures depicted in two-dimensional asynchronously sampled in-phase-quadrature amplitudes' histograms (2D-ASIQHs)-based images and applies the support vector machines (SVMs) tool. Along with the estimation of the instantaneous SNR values over 0-35 dB range, the determination of nine modulation types that belong to different modulation categories i.e., phase-shift keying (Binary-PSK, Quadrature-PSK, and 8-PSK), amplitude-shift keying (2-ASK and 4-ASK) and quadrature-amplitude modulation (4-QAM, 16-QAM, 32-QAM, and 64-QAM) could be achieved by this scheme. The application of this scheme has been simulated using a channel model that is impaired by additive white Gaussian noise (AWGN) and Rayleigh fading, covering a broad range of SNRs of 0-35 dB. The performance of this dual-determination scheme shows high modulation recognition accuracy and low mean SNR estimation error. Therefore, it can be a better alternative for designers of next generation wireless communication systems.

Açıklama

Anahtar Kelimeler

Modulation, Signal to noise ratio, Phase shift keying, Feature extraction, Quadrature amplitude modulation, Fading channels, Receivers, Modulation recognition, SNR estimation, 5G communication system, support vector machine, feature-based approach

Kaynak

Ieee Access

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

9

Sayı

Künye