Effect of Rare Earth Elements (Y, La) on Microstructural Characterization and Corrosion Behavior of Ternary Mg-Y-La Alloys

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Mdpi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this study, the microstructural properties and corrosion behavior of RE elements (Y, La) added to magnesium in varying minors after casting and homogenization heat treatment were investigated. Three-phase structures, such as & alpha;-Mg, lamellae-like phases, and network-shaped eutectic compounds, were seen in the microstructure results. The dendrite-like phases were evenly distributed from the eutectic compounds to the interior of the & alpha;-Mg grains, while the eutectic compounds (& alpha;-Mg + Mg) RE (La/Y)) were distributed at the grain boundaries. According to the corrosion results, the typical hydroxide formation for lanthanum content caused the formation of crater structures in the material, and with the increase in lanthanum content, these crater structures increased both in depth and in density. In addition, the corrosion products formed by Y2O3 and Y(OH)(3) in the Mg-3.21Y-3.15 La alloy increased the thickness of the corrosion film and formed a barrier that protects the material against corrosion. The thinness of the protective barrier against corrosion in the Mg-4.71 Y-3.98 La alloy is due to the increased lanthanum and yttrium ratios. In addition, the corrosion resistance of both Mg-3.21Y-3.15 La and Mg-4.71 Y-3.98 La alloys decreases after homogenization. This negative effect on corrosion is due to the coaxial distribution of oxide/hydroxide layers formed by yttrium and lanthanum after homogenization.

Açıklama

Anahtar Kelimeler

Mg, RE elements, corrosion behavior, microstructure

Kaynak

Materials

WoS Q Değeri

Q1

Scopus Q Değeri

Q2

Cilt

16

Sayı

14

Künye