Effect of Rare Earth Elements (Y, La) on Microstructural Characterization and Corrosion Behavior of Ternary Mg-Y-La Alloys
Küçük Resim Yok
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Mdpi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this study, the microstructural properties and corrosion behavior of RE elements (Y, La) added to magnesium in varying minors after casting and homogenization heat treatment were investigated. Three-phase structures, such as & alpha;-Mg, lamellae-like phases, and network-shaped eutectic compounds, were seen in the microstructure results. The dendrite-like phases were evenly distributed from the eutectic compounds to the interior of the & alpha;-Mg grains, while the eutectic compounds (& alpha;-Mg + Mg) RE (La/Y)) were distributed at the grain boundaries. According to the corrosion results, the typical hydroxide formation for lanthanum content caused the formation of crater structures in the material, and with the increase in lanthanum content, these crater structures increased both in depth and in density. In addition, the corrosion products formed by Y2O3 and Y(OH)(3) in the Mg-3.21Y-3.15 La alloy increased the thickness of the corrosion film and formed a barrier that protects the material against corrosion. The thinness of the protective barrier against corrosion in the Mg-4.71 Y-3.98 La alloy is due to the increased lanthanum and yttrium ratios. In addition, the corrosion resistance of both Mg-3.21Y-3.15 La and Mg-4.71 Y-3.98 La alloys decreases after homogenization. This negative effect on corrosion is due to the coaxial distribution of oxide/hydroxide layers formed by yttrium and lanthanum after homogenization.
Açıklama
Anahtar Kelimeler
Mg, RE elements, corrosion behavior, microstructure
Kaynak
Materials
WoS Q Değeri
Q1
Scopus Q Değeri
Q2
Cilt
16
Sayı
14