A PROPOSED APPROACH NETWORK INTRUSION DETECTION SYSTEM (NIDS) USING DEEP LEARNING FOR SOFTWARE DEFINED NETWORK (SDN): A FUTURISTIC APPROACH
Yükleniyor...
Dosyalar
Tarih
2022-06
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Software defined networking (SDN) is considered one of the most promising solutions for evolving and modifying the architecture of traditional networks. The most notable features of SDN are many improvements and changes to the network and internet architecture. SDN primary solutions are flexibility and centralized control. Therefore, SDN is completely centralized. The centralization of SDN has created many vulnerabilities in this architecture that have made it a target for attackers. The controller is the brain of the SDN, and once it is attacked, the entire network will fall. One of the most significant topics to consider while considering SDN is attack protection. It is vital to put in place a powerful defense system capable of rapidly detecting attacks. Intrusion detection systems are one of the most significant network security systems. We propose to use these approaches to build an SDN-specific intrusion detection system. The deep learning system has attracted researchers in recent years because of its efficiency. Our approach suggests using an intelligent network intrusion detection system (NIDS) which use deep learning to identify attacks that are trained with deep learning algorithms to achieve reliable and secure systems. We propose to use algorithms (DNN, CNN, RNN, GRU, LSTM) in our proposed approach, which is trained on 12 features extracted from 41 features in NSL-KDD dataset. The results show that the CNN algorithm achieves the highest accuracy, as well as other excellent algorithms with high accuracy. Our approach has been successful so it is expected that deep learning can be effectively used for SDN security in the future.
Yazılım tanımlı ağ iletişimi (SDN), geleneksel ağların mimarisini geliştirmek ve değiştirmek için en umut verici çözümlerden biri olarak kabul edilir. SDN en dikkat çekici özellikleri, ağ ve internet mimarisinde yapılan birçok iyileştirme ve değişikliktir. SDN birincil çözümleri esneklik ve merkezi kontroldür. Bu nedenle, SDN tamamen merkezileştirilmiştir. SDN merkezileştirilmesi, bu mimaride onu saldırganlar için bir hedef haline getiren birçok güvenlik açığı yarattı. Kontrolör, SDN beynidir ve bir kez saldırıya uğradığında tüm ağ çökecektir. SDN düşünürken dikkate alınması gereken en önemli konulardan biri saldırı korumasıdır. Saldırıları hızla tespit edebilen güçlü bir savunma sistemini devreye sokmak hayati önem taşımaktadır. Saldırı tespit sistemleri, en önemli ağ güvenlik sistemlerinden biridir. SDN özel bir saldırı tespit sistemi oluşturmak için bu yaklaşımları kullanmayı öneriyoruz. Derin öğrenme sistemi, verimliliği nedeniyle son yıllarda araştırmacıları cezbetmiştir. Yaklaşımımız, güvenilir ve güvenli sistemler elde etmek için derin öğrenme algoritmalarıyla eğitilen saldırıları belirlemek için derin öğrenmeyi kullanan akıllı bir ağ saldırı tespit sistemi (NIDS) kullanılmasını önerir. NSL-KDD veri setindeki 41 öznitelikten çıkarılan 12 öznitelik üzerinde eğitilen önerilen yaklaşımımızda algoritmaların (DNN, CNN, RNN, GRU, LSTM) kullanılmasını öneriyoruz. Sonuçlar, CNN algoritmasının en yüksek doğruluğa ulaştığını ve kalan algoritmaların çok yüksek performans ve iyi, yakın doğrulukla elde ettiğini göstermektedir. Yaklaşımımız o kadar başarılı oldu ki, gelecekte derin öğrenmenin SDN güvenliği için etkin bir şekilde kullanılabileceği tahmin ediliyor."
Yazılım tanımlı ağ iletişimi (SDN), geleneksel ağların mimarisini geliştirmek ve değiştirmek için en umut verici çözümlerden biri olarak kabul edilir. SDN en dikkat çekici özellikleri, ağ ve internet mimarisinde yapılan birçok iyileştirme ve değişikliktir. SDN birincil çözümleri esneklik ve merkezi kontroldür. Bu nedenle, SDN tamamen merkezileştirilmiştir. SDN merkezileştirilmesi, bu mimaride onu saldırganlar için bir hedef haline getiren birçok güvenlik açığı yarattı. Kontrolör, SDN beynidir ve bir kez saldırıya uğradığında tüm ağ çökecektir. SDN düşünürken dikkate alınması gereken en önemli konulardan biri saldırı korumasıdır. Saldırıları hızla tespit edebilen güçlü bir savunma sistemini devreye sokmak hayati önem taşımaktadır. Saldırı tespit sistemleri, en önemli ağ güvenlik sistemlerinden biridir. SDN özel bir saldırı tespit sistemi oluşturmak için bu yaklaşımları kullanmayı öneriyoruz. Derin öğrenme sistemi, verimliliği nedeniyle son yıllarda araştırmacıları cezbetmiştir. Yaklaşımımız, güvenilir ve güvenli sistemler elde etmek için derin öğrenme algoritmalarıyla eğitilen saldırıları belirlemek için derin öğrenmeyi kullanan akıllı bir ağ saldırı tespit sistemi (NIDS) kullanılmasını önerir. NSL-KDD veri setindeki 41 öznitelikten çıkarılan 12 öznitelik üzerinde eğitilen önerilen yaklaşımımızda algoritmaların (DNN, CNN, RNN, GRU, LSTM) kullanılmasını öneriyoruz. Sonuçlar, CNN algoritmasının en yüksek doğruluğa ulaştığını ve kalan algoritmaların çok yüksek performans ve iyi, yakın doğrulukla elde ettiğini göstermektedir. Yaklaşımımız o kadar başarılı oldu ki, gelecekte derin öğrenmenin SDN güvenliği için etkin bir şekilde kullanılabileceği tahmin ediliyor."
Açıklama
Anahtar Kelimeler
Deep learning, Software Defined Network, SDN, Network Intrusion Detection System, NIDS., Derin öğrenme, Yazılım Tanımlı Ağ, SDN, Ağ Saldırı Tespit Sistemi, NIDS.