BLOW UP AND QUENCHING FOR A PROBLEM WITH NONLINEAR BOUNDARY CONDITIONS

dc.authoridSelcuk, Burhan/0000-0002-5141-5148
dc.authoridOZALP, Nuri/0000-0002-8028-3391
dc.contributor.authorOzalp, Nuri
dc.contributor.authorSelcuk, Burhan
dc.date.accessioned2024-09-29T16:11:24Z
dc.date.available2024-09-29T16:11:24Z
dc.date.issued2015
dc.departmentKarabük Üniversitesien_US
dc.description.abstractIn this article, we study the blow up behavior of the heat equation u(t) = u(xx) with u(x) (0, t) = u(p) (0,t), u(x) (a,t) = u(q) (a,t). We also study the quenching behavior of the nonlinear parabolic equation v(t) = v(xx) +2v(x)(2) /(1-v) with v(x)(0,t) = (1-v(0, t))(-p+2), v(x)(a,t) = (1-v (a, t)(-q+2). In the blow up problem, if u(0) is a lower solution then we get the blow up occurs in a finite time at the boundary x = a and using positive steady state we give criteria for blow up and non-blow up. In the quenching problem, we show that the only quenching point is x = a and v(t) blows up at the quenching time, under certain conditions and using positive steady state we give criteria for quenching and non-quenching. These analysis is based on the equivalence between the blow up and the quenching for these two equations.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/20.500.14619/8420
dc.identifier.wosWOS:000358263400003en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherTexas State Univen_US
dc.relation.ispartofElectronic Journal of Differential Equationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHeat equationen_US
dc.subjectnonlinear parabolic equationen_US
dc.subjectblow upen_US
dc.subjectnonlinear boundary conditionen_US
dc.subjectquenchingen_US
dc.subjectmaximum principleen_US
dc.titleBLOW UP AND QUENCHING FOR A PROBLEM WITH NONLINEAR BOUNDARY CONDITIONSen_US
dc.typeArticleen_US

Dosyalar