Sparsity-Driven Despeckling Method with Low Memory Usage

Küçük Resim Yok

Tarih

2016

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ieee

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Speckle noise which is inherent to Synthetic Aperture Radar (SAR) imaging makes it difficult to detect targets and recognize spatial patterns on earth. Thus, despeckling is critical and used as a preprocessing step for smoothing homogeneous regions while preserving features such as edges and point scatterers. In this study, a low-memory version of the previously proposed sparsity-driven despeckling (SDD) method is proposed. All steps of the method are parallelized using OpenMP on CPU and CUDA on GPU. Execution time and despeckling performance are shown using real-world SAR images.

Açıklama

24th Signal Processing and Communication Application Conference (SIU) -- MAY 16-19, 2016 -- Zonguldak, TURKEY

Anahtar Kelimeler

synthetic aperture radar, speckle noise, total variation, parallel programming, CUDA

Kaynak

2016 24th Signal Processing and Communication Application Conference (Siu)

WoS Q Değeri

N/A

Scopus Q Değeri

Cilt

Sayı

Künye