Sparsity-Driven Despeckling Method with Low Memory Usage
dc.authorid | Ozcan, Caner/0000-0002-2854-4005 | |
dc.authorid | SEN, BAHA/0000-0003-3577-2548 | |
dc.authorid | NAR, Fatih/0000-0002-3003-8136 | |
dc.contributor.author | Ozcan, Caner | |
dc.contributor.author | Sen, Baha | |
dc.contributor.author | Nar, Fatih | |
dc.date.accessioned | 2024-09-29T16:11:27Z | |
dc.date.available | 2024-09-29T16:11:27Z | |
dc.date.issued | 2016 | |
dc.department | Karabük Üniversitesi | en_US |
dc.description | 24th Signal Processing and Communication Application Conference (SIU) -- MAY 16-19, 2016 -- Zonguldak, TURKEY | en_US |
dc.description.abstract | Speckle noise which is inherent to Synthetic Aperture Radar (SAR) imaging makes it difficult to detect targets and recognize spatial patterns on earth. Thus, despeckling is critical and used as a preprocessing step for smoothing homogeneous regions while preserving features such as edges and point scatterers. In this study, a low-memory version of the previously proposed sparsity-driven despeckling (SDD) method is proposed. All steps of the method are parallelized using OpenMP on CPU and CUDA on GPU. Execution time and despeckling performance are shown using real-world SAR images. | en_US |
dc.description.sponsorship | IEEE,Bulent Ecevit Univ, Dept Elect & Elect Engn,Bulent Ecevit Univ, Dept Biomed Engn,Bulent Ecevit Univ, Dept Comp Engn | en_US |
dc.identifier.endpage | 1332 | en_US |
dc.identifier.isbn | 978-1-5090-1679-2 | |
dc.identifier.startpage | 1329 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.14619/8437 | |
dc.identifier.wos | WOS:000391250900309 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | tr | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 2016 24th Signal Processing and Communication Application Conference (Siu) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | synthetic aperture radar | en_US |
dc.subject | speckle noise | en_US |
dc.subject | total variation | en_US |
dc.subject | parallel programming | en_US |
dc.subject | CUDA | en_US |
dc.title | Sparsity-Driven Despeckling Method with Low Memory Usage | en_US |
dc.type | Conference Object | en_US |