Comparison of four different heuristic optimization algorithms for the inverse kinematics solution of a real 4-DOF serial robot manipulator
Küçük Resim Yok
Tarih
2016
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer London Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this study, a 4-degree-of-freedom (DOF) serial robot manipulator was designed and developed for the pick-and-place operation of a flexible manufacturing system. The solution of the inverse kinematics equation, one of the most important parts of the control process of the manipulator, was obtained by using four different optimization algorithms: the genetic algorithm (GA), the particle swarm optimization (PSO) algorithm, the quantum particle swarm optimization (QPSO) algorithm and the gravitational search algorithm (GSA). These algorithms were tested with two different scenarios for the motion of the manipulator's end-effector. One hundred randomly selected workspace points were defined for the first scenario, while a spline trajectory, also composed of one hundred workspace points, was used for the second. The optimization algorithms were used for solving of the inverse kinematics of the manipulator in order to successfully move the end-effector to these workspace points. The four algorithms were compared according to the execution time, the end-effector position error and the required number of generations. The results showed that the QPSO could be effectively used for the inverse kinematics solution of the developed manipulator.
Açıklama
Anahtar Kelimeler
Heuristic optimization methods, Inverse kinematics, Serial robot
Kaynak
Neural Computing & Applications
WoS Q Değeri
Q2
Scopus Q Değeri
Q1
Cilt
27
Sayı
4