A Numerical Analysis of Laminar Forced Convection and Entropy Generation of a Diamond-Fe3O4/Water Hybrid Nanofluid in a Rectangular Minichannel

dc.authoridChamkha, Ali/0000-0002-8335-3121
dc.contributor.authorUysal, C.
dc.contributor.authorGedik, E.
dc.contributor.authorChamkha, A. J.
dc.date.accessioned2024-09-29T16:07:49Z
dc.date.available2024-09-29T16:07:49Z
dc.date.issued2019
dc.departmentKarabük Üniversitesien_US
dc.description.abstractThe convective heat transfer and entropy generation of diamond-Fe3O4/water hybrid nanofluid through a rectangular minichannel is numerically investigated under laminar flow conditions. Nanoparticle volume fractions for diamond-Fe3O4/water hybrid nanofluid are in the range 0.05-0.20% and Reynolds number varies from 100 to 1000. The finite volume method is used in the numerical computation. The results obtained for diamond-Fe3O4/water hybrid nanofluid are compared with those of diamond/water and Fe3O4/water conventional nanofluids. It is found that 0.2% diamond-Fe3O4 hybrid nanoparticle addition to pure water provides convective heat transfer coefficient enhancement of 29.96%, at Re=1000. The results show that diamond-Fe3O4/water hybrid nanofluid has higher convective heat transfer coefficient and Nusselt number when compared with diamond/water and Fe3O4/water conventional nanofluids. For diamond-Fe3O4/water hybrid nanofluid, until Re=600, the lowest total entropy generation rate values are obtained for 0.20% nanoparticle volume fraction. However, after Re=800, diamond-Fe3O4/water hybrid nanofluid with 0.20% nanoparticle volume fraction has the highest total entropy generation rate compared to other nanoparticle volume fractions. A similar pattern emerges from the comparison with diamond/water and Fe3O4/water conventional nanofluids. For 0.2% nanoparticle volume fraction, diamond-Fe3O4/water hybrid nanofluid and diamond/water nanofluid have their minimum entropy generation rate at Re=500 and at Re=900, respectively. Moreover, this minimum entropy generation rate point changes with nanoparticle volume fraction values of nanofluids.en_US
dc.identifier.doi10.29252/jafm.12.02.28923
dc.identifier.endpage402en_US
dc.identifier.issn1735-3572
dc.identifier.issn1735-3645
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85061485330en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage391en_US
dc.identifier.urihttps://doi.org/10.29252/jafm.12.02.28923
dc.identifier.urihttps://hdl.handle.net/20.500.14619/7196
dc.identifier.volume12en_US
dc.identifier.wosWOS:000458925900008en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIsfahan Univ Technologyen_US
dc.relation.ispartofJournal of Applied Fluid Mechanicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBejan numberen_US
dc.subjectConvective heat transferen_US
dc.subjectEntropy generationen_US
dc.subjectHybrid nanofluiden_US
dc.subjectMinichannelen_US
dc.titleA Numerical Analysis of Laminar Forced Convection and Entropy Generation of a Diamond-Fe3O4/Water Hybrid Nanofluid in a Rectangular Minichannelen_US
dc.typeArticleen_US

Dosyalar