Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory

dc.authoridEsen, Ismail/0000-0002-7853-1464
dc.authoridAbdelrahman, Alaa Ahmed/0000-0003-4006-743X
dc.authoridEltaher, Mohamed A./0000-0003-3116-2101
dc.contributor.authorAbdelrahman, Alaa A.
dc.contributor.authorEsen, Ismail
dc.contributor.authorOzarpa, Cevat
dc.contributor.authorEltaher, Mohamed A.
dc.date.accessioned2024-09-29T15:54:57Z
dc.date.available2024-09-29T15:54:57Z
dc.date.issued2021
dc.departmentKarabük Üniversitesien_US
dc.description.abstractIn the present manuscript, based on the nonlocal strain gradient theory, a nonclassical dynamic finite element model is developed to study and analyze the dynamic behavior of perforated nanobeam structures under moving mass/load. In the context of nonclassical continuum mechanics and Timoshenko beam theory, dynamic equations of motion of perforated nanobeams are derived including both size scale (nonlocal) and microstructure (strain gradient) effects. The modification of the geometrical parameters due to the perforation process is included in the equations of motion for squared holes arranged in the arrayed form. The effect of the moving mass (the inertia, Coriolis and centripetal forces, and the gravity force) or moving load are included in the proposed model. To remove shear locking problem in slender nanobeams, finite element model on nonclassical shape function basis is developed. Elements stiffness and mass matrices and force vector including the nonlocal and strain gradient effects are derived. The proposed model is verified and checked with previous works. Impacts of perforation, mass/load velocities, inertia of mass, microstructure parameter and nonlocal size scale effects on the dynamic and vibration responses of perforated nanobeam structures have been investigated in a wide context. The following model is beneficial for the design of MEMS/NEMS structures such as frequency filters, resonators, relay switches, accelerometers, and mass flow sensors, with perforation. (c) 2021 Elsevier Inc. All rights reserved.en_US
dc.identifier.doi10.1016/j.apm.2021.03.008
dc.identifier.endpage235en_US
dc.identifier.issn0307-904X
dc.identifier.issn1872-8480
dc.identifier.scopus2-s2.0-85102970688en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage215en_US
dc.identifier.urihttps://doi.org/10.1016/j.apm.2021.03.008
dc.identifier.urihttps://hdl.handle.net/20.500.14619/4381
dc.identifier.volume96en_US
dc.identifier.wosWOS:000656885200002en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofApplied Mathematical Modellingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNonlocal strain gradienten_US
dc.subjectMoving loaden_US
dc.subjectDynamic behavioren_US
dc.subjectPerforated nanobeamen_US
dc.subjectFinite element methoden_US
dc.titleDynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theoryen_US
dc.typeArticleen_US

Dosyalar