A state-of-the-art review on the application of lignosulfonate as a green alternative in soil stabilization
Küçük Resim Yok
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The utilization of lignosulfonate (LS) as a naturally derived biopolymer sourced from lignin in soil stabilization has gained significant attention in recent years. Its intermolecular interaction, hydrophobic and hydrophilic effects, adhesive and binding properties, erosion control abilities, compatibility with various soil types, and environmental sustainability make it a promising alternative to traditional soil stabilizers as well as highlighting its importance. By integrating LS into soil stabilization practices, soil properties can be enhanced, and an ecofriendlier approach can be adopted in the construction sector. This comprehensive review paper extensively examines the applications and structure of LS, as well as their efficacy and mechanisms on a micro-level scale. Afterward, it discusses the geotechnical characteristics of LS-treated soils, including consistency characteristics, dispersivity properties and erosion behavior, electrical conductivity, compaction parameters, permeability and hydraulic conductivity, compressibility characteristics, swelling potential, strength and stiffness properties, durability, and cyclic loading response. In general, LS incorporation into the soils could enhance the geotechnical properties. For instance, the Unconfined Compressive Strength (UCS) of fine-grained soils was observed to improve up to 105 %, while in the case of granular soils, the improvement can be as high as 450 %. This review also examines the economic and environmental efficiency, as well as challenges and ways forward related to LS stabilization. This can lead to economic and environmental benefits given the abundance of LS as a plant polymer for cleaner production and owing to its carbon neutrality and renewability.
Açıklama
Anahtar Kelimeler
Lignosulfonate (LS), Soil stabilization, LS treatment, Environmentally friendly, Green alternative, Biopolymer
Kaynak
Science of the Total Environment
WoS Q Değeri
N/A
Scopus Q Değeri
Q1
Cilt
943