Design, synthesis, characterization, in vitro and in silico evaluation of novel imidazo[2,1-b][1,3,4]thiadiazoles as highly potent acetylcholinesterase and non-classical carbonic anhydrase inhibitors
dc.authorid | Demir, Yeliz/0000-0003-3216-1098 | |
dc.authorid | Ece, Abdulilah/0000-0002-3087-5145 | |
dc.authorid | Turkes, Cuneyt/0000-0002-2932-2789 | |
dc.authorid | TAHTACI, HAKAN/0000-0002-1557-6315 | |
dc.contributor.author | Askin, Sercan | |
dc.contributor.author | Tahtaci, Hakan | |
dc.contributor.author | Turkes, Cuneyt | |
dc.contributor.author | Demir, Yeliz | |
dc.contributor.author | Ece, Abdulilah | |
dc.contributor.author | Ciftci, Gulsen Akalsn | |
dc.contributor.author | Beydemir, Sukru | |
dc.date.accessioned | 2024-09-29T15:55:04Z | |
dc.date.available | 2024-09-29T15:55:04Z | |
dc.date.issued | 2021 | |
dc.department | Karabük Üniversitesi | en_US |
dc.description.abstract | Imidazole and thiadiazole derivatives display an extensive application in pharmaceutical chemistry, and they have been investigated as bioactive molecules for medicinal chemistry purposes. Classical carbonic anhydrase (CA) inhibitors are based on sulfonamide groups, but inhibiting all CA isoforms nonspecifically, thereby causing undesired side effects, is the main drawback of these types of inhibitors. Here we reported an investigation of novel 2,6-disubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives (9a-k, 10a, and 11a) and 2,5,6-trisubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives (12a-20a) that do not possess the zinc-binding sulfonamide group for the inhibition of human carbonic anhydrase (hCA, EC 4.2.1.1) I and II isoforms and also of acetylcholinesterase (AChE, EC 3.1.1.7). Imidazo[2,1-b][1,3,4]thiadiazoles demonstrated low nanomolar inhibitory activity against hCA I, hCA II, and AChE (KIs are in the range of 23.44-105.50 nM, 10.32-104.70 nM, and 20.52-54.06 nM, respectively). Besides, compound 9b inhibit hCA I up to 18-fold compared to acetazolamide, while compound 10a has a 5-fold selectivity towards hCA II. The synthesized compounds were also evaluated for their cytotoxic effects on the L929 mouse fibroblast cell line. Molecular docking simulations were performed to elucidate these inhibitors' potential binding modes against hCA I and II isoforms and AChE. The novel compounds reported here can represent interesting lead compounds, and the results presented here might provide further structural guidance to discover and design more potent hCA and AChE inhibitors. | en_US |
dc.description.sponsorship | Karabuk University [KBUBAP18YL165]; Erzincan Binali Yldrm University [TSA2020729]; Ardahan University [2019007]; Anadolu University [1610S681] | en_US |
dc.description.sponsorship | This work was supported by the Research Fund of Karabuk University (grant number KBUBAP18YL165) , the Research Fund of Erzincan Binali Yldrm University (grant number TSA2020729) , the Research Fund of Ardahan University (grant number 2019007) , and the Research Fund of Anadolu University (grant number 1610S681) . | en_US |
dc.identifier.doi | 10.1016/j.bioorg.2021.105009 | |
dc.identifier.issn | 0045-2068 | |
dc.identifier.issn | 1090-2120 | |
dc.identifier.pmid | 34052739 | en_US |
dc.identifier.scopus | 2-s2.0-85106605026 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.bioorg.2021.105009 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14619/4435 | |
dc.identifier.volume | 113 | en_US |
dc.identifier.wos | WOS:000663790900010 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | PubMed | en_US |
dc.language.iso | en | en_US |
dc.publisher | Academic Press Inc Elsevier Science | en_US |
dc.relation.ispartof | Bioorganic Chemistry | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Carbonic anhydrase | en_US |
dc.subject | Acetylcholinesterase | en_US |
dc.subject | Imidazo | en_US |
dc.subject | [2,1-b][1,3,4]thiadiazole | en_US |
dc.subject | In silico study | en_US |
dc.title | Design, synthesis, characterization, in vitro and in silico evaluation of novel imidazo[2,1-b][1,3,4]thiadiazoles as highly potent acetylcholinesterase and non-classical carbonic anhydrase inhibitors | en_US |
dc.type | Article | en_US |