Thyroid Disease Classification Using Machine Learning Algorithms

dc.contributor.authorSalman, K.
dc.contributor.authorSonuc, E.
dc.date.accessioned2024-09-29T16:21:03Z
dc.date.available2024-09-29T16:21:03Z
dc.date.issued2021
dc.departmentKarabük Üniversitesien_US
dc.description2nd International Conference on Physics and Applied Sciences, ICPAS 2021 -- 26 May 2021 through 27 May 2021 -- Baghdad -- 170835en_US
dc.description.abstractWith the vast amount of data and information difficult to deal with, especially in the health system, machine learning algorithms and data mining techniques have an important role in dealing with data. In our study, we used machine learning algorithms with thyroid disease. The goal of this study is to categorize thyroid disease into three categories: hyperthyroidism, hypothyroidism, and normal, so we worked on this study using data from Iraqi people, some of whom have an overactive thyroid gland and others who have hypothyroidism, so we used all of the algorithms. Support vector machines, random forest, decision tree, naïve bayes, logistic regression, k-nearest neighbors, multi-layer perceptron (MLP), linear discriminant analysis. To classification of thyroid disease. © Published under licence by IOP Publishing Ltd.en_US
dc.identifier.doi10.1088/1742-6596/1963/1/012140
dc.identifier.issn1742-6588
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85112402019en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1088/1742-6596/1963/1/012140
dc.identifier.urihttps://hdl.handle.net/20.500.14619/9503
dc.identifier.volume1963en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIOP Publishing Ltden_US
dc.relation.ispartofJournal of Physics: Conference Seriesen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectclassification modelen_US
dc.subjectDecision treeen_US
dc.subjectK-nearest neighborsen_US
dc.subjectLinear discriminant analysisen_US
dc.subjectlogistic regressionen_US
dc.subjectMachine learningen_US
dc.subjectMulti-layer perceptron (MLP)en_US
dc.subjectNaive bayesen_US
dc.subjectRandom foresten_US
dc.subjectSupport vector machinesen_US
dc.subjectThyroid diseasesen_US
dc.titleThyroid Disease Classification Using Machine Learning Algorithmsen_US
dc.typeConference Objecten_US

Dosyalar