On nonlinear bivariate [m1, m2]-singular integral operators
Küçük Resim Yok
Tarih
2019
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Wiley
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, we give some pointwise convergence and Fatou type convergence theorems for a family of nonlinear bivariate [m(1), m(2)] - singular integral operators in the following form: T-omega([m1,) (m2]) (f; x,y) = integral integral(R2) kappa(omega) (t, s, Sigma(m1)(v1=1) Sigma(m2)(v2=1) (-1)((v1+v2)) (m(1) v(1)) (m(2) v(2)) f(x + v(1)t, y + v(2)s)) dsdt, where m(1), m(2) >= 1 are fixed natural numbers, (x, y) is an element of R-2 and omega is an element of Omega, Omega denotes a nonempty set of indices endowed with a topology. Here, {kappa(omega)}(omega is an element of Omega) denotes a family of kernel functions and f belongs to the space of Lebesgue integrable functions L (R-2). Some numerical examples and graphical illustrations supporting the results are also given.
Açıklama
Anahtar Kelimeler
[m(1), m(2), mu]-Lebesgue point, bivariate integral operators, Fatou type convergence, pointwise convergence
Kaynak
Mathematical Methods in the Applied Sciences
WoS Q Değeri
Q2
Scopus Q Değeri
Q1
Cilt
42
Sayı
16